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The Alignment Problem

• Find a policy that maximizes a reward r while staying close to a reference policy
πref :

max
πθ

∫
rdπθ − βKL(πθ||πref)

• The optimal policy is given by:

πθ(y |x) =
πref(y |x) exp( r(x,y)β

)

Z(x)
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DPO as a Pointwise Preference Approach 1/2

Direct Preference Optimization (DPO)
[Rafailov et al.(2024)Rafailov, Sharma, Mitchell, Manning, Ermon, and Finn]

• The reward optimized by the LLM:

rθ(x , y) = β log
πθ(y |x)
πref(y |x)

+ β log(Z(x))

• Z(x) is a normalization constant.

• Paired preference dataset: (X ,Y+,Y−) ∼ µ
• Y+: positive (chosen) response
• Y−: negative (rejected) response
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DPO as a Pointwise Preference Approach 2/2

• Objective: Minimize the logarithmic sigmoid loss:
min
θ∈Θ
−E(x,y+,y−)∼µ log(σ(β(rθ(x , y+)− rθ(x , y−))))

• Simplified form (normalization Z(x) cancels out):

min
θ
−E(x,y+,y−)∼µ log

(
σ

(
β log

(
πθ(y+|x)
πref(y+|x)

)
− β log

(
πθ(y−|x)
πref(y−|x)

)))
• Interpretation as pointwise preference:

log
(

πθ(y+|x)
πref (y+|x)

)
≥ log

(
πθ(y−|x)
πref (y−|x)

)
, ∀(x , y+, y−) ∼ µ. (1)

• Relaxation through logistic loss, suggests other algorithms (e.g., hinge loss in
SLIC [Zhao et al.(2023)Zhao, Khalman, Joshi, Narayan, Saleh, and Liu]).
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Pointwise Preference

• Pointwise Preference positive versus negative:

log
(

πθ(y+|x)
πref (y+|x)

)
≥ log

(
πθ(y−|x)
πref (y−|x)

)
, ∀(x , y+, y−) ∼ µ. (2)

• Equivalently: pointwise Preference of margin (positive - negative) of Model
versus Reference:

log
πθ(y+|x)
πθ(y−|x) ≥ log

πref (y+|x)
πref (y−|x) , ∀(x , y+, y−) ∼ µ. (3)
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Pointwise Preference (Positive versus Negative)

Prompt LLM

m l

Positive Negative

log
(

πθ(y+|x)
πref (y+|x)

)
≥ log

(
πθ(y−|x)
πref (y−|x)

)
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Pointwise Preference, Model Versus Reference based on Margins

Prompt LLM

m — l

Model
Æ

m — l

Reference
Æ

log
πθ(y+|x)
πθ(y−|x) ≥ log

πref (y+|x)
πref (y−|x)
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Partial Order on One Dimensional Distribution:
First Order Stochastic Dominance

Definition:

• For a real random variable Z , the left-continuous inverse of the Cumulative
Distribution Function (CDF) FZ is denoted by F

(−1)
Z : [0, 1]→ R.

• This inverse, also known as the quantile function QZ (p), is defined as:
QZ (p) = F

(−1)
Z (p) = inf{η : FZ (η) ≥ p} for p ∈ [0, 1].

Definition (First Order Stochastic Dominance (FSD):)
Given two random variables Z1 and Z2, Z1 is said to dominate Z2 in the first order if
Z1 has larger quantiles than Z2 for all percentiles p:

Z1 ≽
FSD

Z2 ⇐⇒ QZ1 (p) ≥ QZ2 (p), ∀p ∈ [0, 1].
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Distributional Preference Unpaired
(based on rewards of positive and negatives)

LLM

Prompt

m l

Positive Negative

log
πθ(Y+|X+)
πref (Y+|X+)

≽
FSD

log
πθ(Y−|X−)

πref (Y−|X−)
.

does not need paired positive and negative answer for each prompt!
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Distributional Preference Paired
(based on margins of rewards between Model and Reference)

LLM

Prompt

m — l m — l

Model Reference

Æ Æ

log
πθ(Y+|X )
πθ(Y−|X )

≽
FSD

log
πref (Y+|X )
πref (Y−|X )

needs paired positive and negative answer for each prompt!
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Distributional Unpaired Preference

• No access to triplets of prompts and positive/negative responses (x , y+, y−).

• Separate access to:

• µ+ ∈ P(X × Y): Distribution of positive prompt/response pairs (X+,Y+) to
be highly rewarded.

• µ− ∈ P(X × Y): Distribution of negative samples (X−,Y−) to be
associated with low reward.

• Define the distributional preference as follows:

Definition (Distributional Preference in the Unpaired Setting)
A policy π prefers distributionally µ+ over µ− with respect to a reference policy πref

if:

log
πθ(Y+|X+)

πref(Y+|X+)
≽

FSD
log

πθ(Y−|X−)

πref(Y−|X−)
.

In other words, noting ru ◦ πθ(x , y) = log πθ(y|x)
πref (y|x)

, the distributional preference in
the unpaired setting means that we have the following constraint:

(ru ◦ πθ)♯µ+ ≽
FSD

(ru ◦ πθ)♯µ−. (4)
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Distributional Paired Preference

We define below more formally the paired distributional preference via stochastic
dominance:

Definition (Distributional Preference in the Paired Setting)
We say that the policy πθ distributionally dominates πref in terms of log probability
ratio of positive and negative responses if:

log
πθ(Y+|X )

πθ(Y−|X )
≽

FSD
log

πref(Y+|X )

πref(Y−|X )
.

Noting rp ◦ πθ(x , y+, y−) = log
πθ(y+|x)
πθ(y−|x) this can be written as follows:

(rp ◦ πθ)♯µ ≽
FSD

(rp ◦ πref)♯µ. (5)
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Learning Policies with Distributional Constraints

• FSD unpaired Constraint:
Find πθ ∈ H such that (ru ◦ πθ)♯µ+ ≽

FSD
(ru ◦ πθ)♯µ− (FSD unpaired)

• FSD Paired Constraint:
Find πθ ∈ H such that (rp ◦ πθ)♯µ ≽

FSD
(rp ◦ πref)♯µ (FSD paired)

• Both Problem can be abstracted out to:
Find θ ∈ Θ such that : Uθ ≽

FSD
Vθ
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A Convex Relaxation of FSD

Uθ ≽
FSD

Vθ ⇐⇒ QUθ
(t) ≥ QVθ

(t), ∀t ∈ [0, 1].

We can relax this problem to minimizing the violation of the FSD order:

minθ∈Θ ε(θ) :=
∫ 1
0 h(QUθ

(t)− QVθ
(t))dt,

where h penalizes the violation of dominance of Uθ on Vθ

• Indicator Loss: h(x) = 1x<0 .

• β-squared Hinge Loss: For a margin β > 0, h(x) = (β − x)2+.

• β-logistic Loss: h(x) = log(1 + exp(−βx)).

• β-Least Squares:

• Although not a convex relaxation of the 0/1 loss, the least squares loss has
been used in classification .

• In the context of alignment, it was used in IPO
[Azar et al.(2024)Azar, Guo, Piot, Munos, Rowland, Valko, and Calandriello].

• h(x) = (β − x)2.
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Quantile Violation as an Optimal Transport Problem

Theorem (Theorem 2.9 and Proposition 2.17 in [Santambrogio(2015)])

Let h : R→ R+ be a convex function we have for two real random variables U,V ,
with measures µU , µV :∫ 1

0
h(QU(t)− QV (t))dt = min

γ∈Π(µU ,µV )

∫
h(u − v)dγ(u, v) = OTh(µU , µV )

and γ∗ = (QU ,QV )♯L1([0, 1]) is a minimizer (where L1 is the Lebesgue measure on
[0, 1] ). If furthermore h is strictly convex γ∗ is the unique minimizer.

min
θ∈Θ

∫ 1

0
h(QUθ

(t)− QVθ
(t))dt = min

θ∈Θ
OTh(µUθ

, µVθ
) = min

θ∈Θ
min

γ∈Π(µUθ
,µVθ

)

∫
h(u − v)dγ(u, v).

Optimizing Relaxed FSD is an inner 1D Optimal Transport problem with smooth and
convex cost
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Computational Algorithm via Sorting

• We consider empirical measures and solve for a fixed θ. We simplify notation by
omitting θ.

• OTh(µ̂U , µ̂V ) is of interest, where:

µ̂U =
1
n

n∑
i=1

δui , µ̂V =
1
n

n∑
i=1

δvi .

• Due to the convexity of h , OTh(µ̂Uθ
, µ̂Vθ

)’s optimal coupling is given by the
north-west corner solution [Peyré and Cuturi(2019)] (Chapter 3, Section 3.4.2),
informally matching i-th smallest elements of U and V .

• Formally, if we sort ui and vi into order statistics (u(1) ≤ · · · ≤ u(n),
v (1) ≤ · · · ≤ v (n)):

OTh(µ̂U , µ̂V ) =
1
n

n∑
i=1

h(u(i) − v (i)).

• Given empirical samples µ̂Uθ
= 1

n

∑n
i=1 δui

θ
and µ̂Vθ

= 1
n

∑n
i=1 δv i

θ
, with u

(i)
θ , v

(i)
θ

as order statistics:

AOT

min
θ∈Θ

OTh(µ̂Uθ
, µ̂Vθ

) = min
θ∈Θ

1
n

n∑
i=1

h(u
(i)
θ − v

(i)
θ ) (AOT)
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AOT: Alignment Via Optimal Transport

Algorithm 1 AOT Unpaired

1: Input: πθ, πref , β > 0, ε > 0,
2: Unpaired Preference Data: “Cho-

sen” µ̂n+ and “Rejected” µ̂n−.
3: for iter← 1, niter do
4: Get a Positive/Negative mini-batch
5: {(xi,+, yi,+) ∼ µ̂n+, i = 1 . . . b}
6: {(xi,−, yi,−) ∼ µ̂n−, i = 1 . . . b}
7: Compute Rewards
8: uiθ = log

πθ(yi,+|xi,+)

πref (yi,+|xi,+)

9: v i
θ = log

πθ(yi,−|xi,−)

πref (yi,−|xi,−)

10: Sort Rewards
11: (u(1) . . . u(b)) = Sort(uiθ)
12: (v (1) . . . v (b)) = Sort(v i

θ)

13: Compute AOT logistic loss
14: ℓθ = − 1

b

∑b
i=1 log σ(β(u

(i)
θ −

v
(i)
θ ))

15: Update θ with
PagedAdamw32bit

16: end for
17: Return πθ

Algorithm 2 AOT Paired

1: Input: πθ, πref , β > 0,
2: Paired Preference Data: µ̂n =

1
n

∑n
i=1 δ(xi ,yi,+,yi,−)

3: for iter← 1, niter do
4: Get a Positive/Negative mini-batch
5: {(xi , yi,+, yi,−) ∼ µ̂n, i =

1 . . . b}
6: Compute Margins for i =

1 . . . b
7: uiθ = log

πθ(yi,+|xi )
πθ(yi,−|xi )

8: v i
θ = log

πref (yi,+|xi )
πref (yi,−|xi )

9: Sort Margins
10: (u(1) . . . u(b)) = Sort(uiθ)
11: (v (1) . . . v (b)) = Sort(v i

θ)

12: Compute AOT logistic loss
13: ℓθ = − 1

b

∑b
i=1 log σ(β(u

(i)
θ −

v
(i)
θ ))

14: θ with PagedAdamw32bit
15: end for
16: Return πθ 20
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Parametric Rate for AOT

Theorem (Informal)
Under appropriate Assumptions we have:

E OTh

(
(r ◦ πθ̂n )♯µ+, (r ◦ πθ̂n )♯µ−

)
− OTh

(
(r ◦ πθ∗ )♯µ+, (r ◦ πθ∗ )♯µ−

)
≲ n−

1
2 ,

where ≲ refers to inequality up to constants that depend only on constants in the
assumptions.

The model estimated from emprical samples with AOT generalizes on unseen samples
with a rate n−

1
2
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Elements of the Proof 1/2

min
πθ∈H

∫ 1

0
h
(
Q(r◦πθ)♯µ+

(t)− Q(r◦πθ)♯µ− (t)
)
dt = min

πθ∈H
OTh

(
(r ◦ πθ)♯µ+, (r ◦ πθ)♯µ−

)
(uAOTh)

Define the OT cost c : [−M,M]× [−M,M]→ [0,R] such that c(z, z ′) = h(z − z ′),
for z, z ∈ [−M,M]. Define the c-transform of a function φ : [−M,M]→ R:

φc (z) = inf
z′∈[−M,M]

h(z − z ′)− φ(z).

In our setting, a function is called c-concave if there exists ψ : [−M,M]→ R such
that φ = ψc . Define:

Fc = {φ : [−M,M]→ [−R,R], φ is c-concave, with ||φc ||∞ ≤ R}
By duality (Theorem 5.10 in [Villani(2009)]) we have:

OTh

(
(r ◦ πθ)♯µ+, (r ◦ πθ)♯µ−

)
= sup

φ∈Fc

∫
φ(r ◦ πθ)dµ+ −

∫
φc (r ◦ πθ)dµ−.

23



Elements of the proof 2/2

Replacing the dual expression of OTh in (uAOTh), we see that (uAOTh) can be cast
as a min-max problem:

min
πθ∈H

sup
φ∈Fc

∫
φ(r ◦ πθ)dµ+ −

∫
φc (r ◦ πθ)dµ−. (6)

Given samples µ̂n+ = 1
n

∑n
i=1 δ(xi,+,yi,+) and µ̂n− = 1

n

∑n
i=1 δ(xi,−,yi,−), the empirical

problem is:

min
πθ∈H

sup
φ∈Fc

∫
φ(r ◦ πθ)dµ̂n+ −

∫
φc (r ◦ πθ)dµ̂n−. (7)

Let πθ∗ be the population minimizer of (uAOTh) and πθ̂n be the solution of the
empirical problem (7). We have the following sample complexity bound for the
violation of stochastic dominance in AOT unpaired:

E OTh

(
(r ◦ πθ̂n )♯µ+, (r ◦ πθ̂n )♯µ−

)
≤ OTh

(
(r ◦ πθ∗ )♯µ+, (r ◦ πθ∗ )♯µ−

)︸ ︷︷ ︸
Optimal Almost FSD Violation

+ 2Rn(Fc ; (r ◦ πθ∗ )♯µ+) + 2Rn(Fc
c ; (r ◦ πθ∗ )♯µ−)︸ ︷︷ ︸

One dimensional OT sample complexity with optimal θ∗

+ 2Rn(Fc ◦ r ◦ H;µ+) + 2Rn(Fc
c ◦ r ◦ H;µ−)︸ ︷︷ ︸

Complexity of learning in H via the 1D OT problem

,

where Rn(F ; ν) = E supφ∈F
∣∣ 1
n

∑n
i=1 σiφ(Zi )

∣∣ is the Rademacher Complexity and for
i = 1 . . . n, σi are independent Rademacher random variables and Zi ∼ ν iid.
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Distributional Preference
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(a) Stochastic Dominance of
Reward of Chosen on Rejected:
AOT achieves a larger margin
between the quantile plots of chosen
and rejected rewards.
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(b) Stochastic Dominance of AOT’s
optimized policy margin (between
Chosen on Rejected) on the margin
of the reference policy.

Figure 1: AOT in the paired & unpaired settings enables first-order stochastic dominance of
the chosen reward distribution on the rejected distribution (a). The margin between the
quantiles of chosen and rejected rewards is larger than alternative strategies. In (b), we see
that AOT’s policy chosen to rejected log-likelihood ratio dominates that ratio for the base
model and alternative strategies.
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Results on Merlinite 7B Alignment

AlpacaEval
(GPT4)

ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 29.9 82.5 66.1 62.9 50.8 74.4 53.1
AOT unpaired 31.3 82.5 66.2 62.8 51.1 74.4 51.8
DPO 27.4 82.8 65.8 63.1 50.6 74.3 52.0
KTO 24.9 82.7 65.4 63.0 48.7 74.9 53.9
IPO 27.7 82.4 65.1 63.0 46.5 74.0 52.3
Merlinite-7B 17.1 81.6 63.2 62.6 42.0 73.9 45.2

Table 1: Merlinite-7B trained on UltraFeedback Binarized. AOT results in the best
performing LLM as compared to the alternative alignment algorithms on AlpacaEval, and is
competitive across the other benchmarks that are evaluated in the zero shot regime.
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Ablations on AOT Losses and Batch size

Figure 2: Impact of batch size and loss type on AOT performance. The batch size is the
effective number of samples in the mini-batch per GPU. We found the logistic loss to be
performing better than least squared or hinge squared losses (all using β = 0.01). As we
increase batch size, we also observed improvement in AOT performance, which is expected as
more samples per minibatch results in a better effect of stochastic dominance (conforming
Corollary 5).
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Ablation Study on β
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Figure 3: Impact of (β) parameter on performance of different alignment algorithms. β

controls the divergence of the policy model from the initial reference model (low beta - more
divergence, high beta - less divergence). We see a general trend that with higher betas, LLMs
alignment decreases the performance. Hence, for all experiments, we selected β = 0.01 as a
default value.
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mroueh@us.ibm.com

Code in TRL: HuggingFace Link

Paper on arxiv: https: // arxiv. org/ abs/ 2406. 05882
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