An Elliptic Curve Prime Race Problem

Kin Ming Tsang

University of British Columbia

Comparative Prime Number Theory Symposium June 21, 2024

joint with Yifeng Huang and Chi Hoi (Kyle) Yip

- < ∃ →

1 Story begins

- Race problem
- One more interesting observation

Beginning

Undergraduate research program on Elliptic Curves by my advisor.

Beginning

Undergraduate research program on Elliptic Curves by my advisor.

Given an elliptic curve $E: y^2 = x^3 + ax + b$ over \mathbb{Q} , where $a, b \in \mathbb{Z}$. We know that the trace of Frobenius at good prime p are given by

$$a_p(E) = p + 1 - \#E(\mathbb{F}_p)$$

< □ > < 同 > < 回 > < 回 > < 回 >

Beginning

Undergraduate research program on Elliptic Curves by my advisor.

Given an elliptic curve $E: y^2 = x^3 + ax + b$ over \mathbb{Q} , where $a, b \in \mathbb{Z}$. We know that the trace of Frobenius at good prime p are given by

$$a_p(E) = p + 1 - \#E(\mathbb{F}_p)$$

Fix prime $\ell \neq p$, the undergraduates plot some graphs on the race of a_p for $a_p \equiv r_1 \mod \ell$ and $a_p \equiv r_{-1} \mod \ell$, for some $0 \leq r_1, r_{-1} \leq \ell - 1$.

Beginning

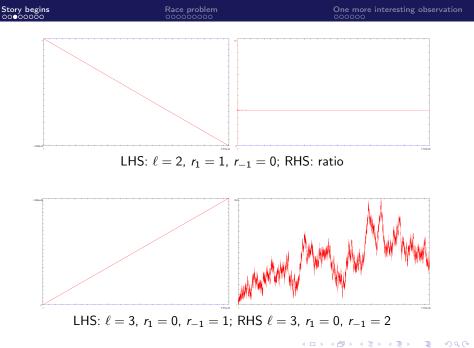
Undergraduate research program on Elliptic Curves by my advisor.

Given an elliptic curve $E: y^2 = x^3 + ax + b$ over \mathbb{Q} , where $a, b \in \mathbb{Z}$. We know that the trace of Frobenius at good prime p are given by

$$a_p(E) = p + 1 - \#E(\mathbb{F}_p)$$

Fix prime $\ell \neq p$, the undergraduates plot some graphs on the race of a_p for $a_p \equiv r_1 \mod \ell$ and $a_p \equiv r_{-1} \mod \ell$, for some $0 \le r_1, r_{-1} \le \ell - 1$. Graphs of elliptic curves LMFDB label 37.b1 (credits to Tighe McAsey) on next slide.

$$change = \begin{cases} +1 & \text{if } a_p \equiv r_1 \pmod{\ell} \\ -1 & \text{if } a_p \equiv r_{-1} \pmod{\ell} \end{cases}$$



Kin Ming Tsang (UBC)

Natural question: Explain the slope of the graph.

Natural question: Explain the slope of the graph.

Fact 1

Let p be a prime of good reduction for E/\mathbb{Q} , $\ell \neq p$ be prime and $E[\ell]$ be the ℓ -torsion. We have the representation

 $\overline{\rho}_{\ell}: \mathsf{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \to \mathsf{Aut}(E[\ell]) \cong \mathsf{GL}_2(\mathbb{Z}/\ell\mathbb{Z}).$

Then

$$\operatorname{tr}(\overline{\rho}_{\ell}(\operatorname{Frob}_{p})) = a_{p}(E) \pmod{\ell}$$

where Frob_p is the Frobenius substitution.

Natural question: Explain the slope of the graph.

Fact 1

Let p be a prime of good reduction for E/\mathbb{Q} , $\ell \neq p$ be prime and $E[\ell]$ be the ℓ -torsion. We have the representation

 $\overline{\rho}_{\ell}: \mathsf{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \to \mathsf{Aut}(E[\ell]) \cong \mathsf{GL}_2(\mathbb{Z}/\ell\mathbb{Z}).$

Then

$$\operatorname{tr}(\overline{\rho}_{\ell}(\operatorname{Frob}_{p})) = a_{p}(E) \pmod{\ell}$$

where Frob_p is the Frobenius substitution.

Takeaway

By Chebotarev density theorem, the distribution of $a_p(E) \mod \ell$ is governed by the distribution of Frob_p in $\operatorname{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q})$ and the trace map $\operatorname{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \to \mathbb{Z}/\ell\mathbb{Z}$.

Kin Ming Tsang (UBC)

Elliptic Curve Prime Race

mod 2 example

Q: Can we describe $E[\ell]$ and the trace map?

mod 2 example

Q: Can we describe $E[\ell]$ and the trace map? A: Yes if $\ell = 2$.

mod 2 example

Q: Can we describe $E[\ell]$ and the trace map? A: Yes if $\ell = 2$.

Let E/\mathbb{Q} be an elliptic curve in the reduced Weierstrass form

$$y^2 = x^3 + ax + b = f(x),$$

where $a, b \in \mathbb{Q}$, with discriminant $\Delta = -(4a^3 + 27b^2)$ and α_1, α_2 and α_3 be the roots of f(x). Let

$$S_0 = \{p \text{ prime} : a_p(E) \equiv 0 \mod 2\}$$

$$S_1 = \{p \text{ prime} : a_p(E) \equiv 1 \mod 2\}.$$

Let $L = \mathbb{Q}(E[2])$, $G = Gal(L/\mathbb{Q})$ and δ be any density of set of primes (say natural density).

Case 1: Suppose $L = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$ with $[L : \mathbb{Q}] = 6$. Then $G \cong S_3$. Up to conjugacy, we have

$$\begin{aligned} \operatorname{Gal}(L/\mathbb{Q}) &\longrightarrow \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) & \text{class size} \\ (1)(2)(3) &\longmapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \stackrel{\operatorname{tr}}{\longrightarrow} 0 \mod 2 & 1 \\ (12)(3) &\longmapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & \stackrel{\operatorname{tr}}{\longrightarrow} 0 \mod 2 & 3 \\ (123) &\longmapsto \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} & \stackrel{\operatorname{tr}}{\longrightarrow} 1 \mod 2 & 2 \end{aligned}$$

Hence, $\delta(S_0) = \frac{1+3}{6} = \frac{2}{3}$.

Image: A matrix and a matrix

∃ ► < ∃ ►</p>

Case 2: f(x) splits completely in \mathbb{Q} , i.e. $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{Q}$. Then $L = \mathbb{Q}$ and G is trivial. Hence, $\delta(S_0) = 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Case 2: f(x) splits completely in \mathbb{Q} , i.e. $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{Q}$. Then $L = \mathbb{Q}$ and G is trivial. Hence, $\delta(S_0) = 1$.

Case 3: $\alpha_1 \in \mathbb{Q}$ but $\alpha_2, \alpha_3 \notin \mathbb{Q}$. Then $L = \mathbb{Q}(\alpha_2)$ and $G \cong C_2$. Hence, $\delta(S_0) = 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Case 2: f(x) splits completely in \mathbb{Q} , i.e. $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{Q}$. Then $L = \mathbb{Q}$ and G is trivial. Hence, $\delta(S_0) = 1$.

Case 3: $\alpha_1 \in \mathbb{Q}$ but $\alpha_2, \alpha_3 \notin \mathbb{Q}$. Then $L = \mathbb{Q}(\alpha_2)$ and $G \cong C_2$. Hence, $\delta(S_0) = 1$.

Case 4: Suppose $L = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$ with $[L : \mathbb{Q}] = 3$. Then $G \cong C_3$. Fix a basis $\{P_1, P_2\}$ for E[2] and one can see $P_3 = P_1 + P_2$. We have

$$\begin{aligned} \operatorname{Gal}(L/\mathbb{Q}) &\longrightarrow \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) \\ & id \longmapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \xrightarrow{\operatorname{tr}} 0 \mod 2 \\ & (123) \longmapsto \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} & \xrightarrow{\operatorname{tr}} 1 \mod 2 \\ & (132) \longmapsto \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} & \xrightarrow{\operatorname{tr}} 1 \mod 2 \end{aligned}$$

Hence, $\delta(S_0) = \frac{1}{3}$.

Theorem 2

Let E/\mathbb{Q} be an elliptic curve in the reduced Weierstrass form

$$y^2 = x^3 + ax + b,$$

where $a, b \in \mathbb{Q}$, with discriminant $\Delta = -(4a^3 + 27b^2)$. Let $f(x) = x^3 + ax + b$ and α_1, α_2 and α_3 be the roots of f(x). Let $S_0 = \{p \text{ prime} : a_p(E) \equiv 0 \mod 2\}$ and $S_1 = \{p \text{ prime} : a_p(E) \equiv 1 \mod 2\}$. Let δ be any density of set of primes (say natural density). We have the following cases:

- If f is reducible over \mathbb{Q} , then $\delta(S_0) = 1$ and $\delta(S_1) = 0$.
- If f is irreducible over \mathbb{Q} and $\sqrt{\Delta} \in \mathbb{Q}$, then $\delta(S_0) = 1/3$ and $\delta(S_1) = 2/3$.
- So If f is irreducible over \mathbb{Q} and $\sqrt{\Delta} \notin \mathbb{Q}$, then $\delta(S_0) = 2/3$ and $\delta(S_1) = 1/3$.

< □ > < 同 > < 回 > < 回 > < 回 >

3 One more interesting observation

Kin Ming Tsang (UBC)

Elliptic Curve Prime Race

June 21, 2024

Further question to be asked

Classical prime number race: the prime race between 1 mod 4 and 3 mod 4

Image: Image:

Further question to be asked

- Classical prime number race: the prime race between 1 mod 4 and 3 mod 4 Our question: After suitable weightings, the a_p race between $r_1 \mod \ell$ and $r_{-1} \mod \ell$.
- Warning: In literature, prime race of an elliptic curve refers to the a_p race between positives and negatives.

Image: A matrix and a matrix

Framework

Fixing ℓ . The a_p values of an elliptic curve are determined by the Galois representation. We will get to Chebyshev Bias in Galois settings.

Image: A matrix and a matrix

Framework

Fixing ℓ . The a_p values of an elliptic curve are determined by the Galois representation. We will get to Chebyshev Bias in Galois settings.

Let L/K be a normal extension of number fields. Let G = Gal(L/K) be the corresponding Galois group and let C be a conjugacy class of G. Let \mathfrak{p} be a prime of K which is unramified in L. Define the Frobenius substitution attached to \mathfrak{p} be the conjugacy class

$$\mathsf{Frob}_{\mathfrak{p}} = \{\mathsf{Frob}_{\mathfrak{P}} : \mathfrak{P} \text{ lying over } \mathfrak{p}\}.$$

Define the prime counting functions

$$\pi(x; K) = \#\{N\mathfrak{p} \le x : \mathfrak{p} \text{ (unramified) prime of } K\}$$

$$\pi(x; C) = \#\{N\mathfrak{p} \le x : \operatorname{Frob}_{\mathfrak{p}} = C \text{ and } \mathfrak{p} \text{ (unramified) prime of } K\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

(We follow the treatment in Ng's thesis) Assume GRH throughout. Notation:

$$E(x; C) := \frac{\log x}{\sqrt{x}} \left(\frac{|G|}{|C|} \pi(x; C) - \pi(x; K) \right)$$

$$\psi(x, \chi) := \sum_{\substack{N \mathfrak{p}^m \le x, \mathfrak{p} \text{ unramified}}} \chi(\operatorname{Frob}_{\mathfrak{p}}^m) \log(N \mathfrak{p})$$

$$sq^{-1}(C) := \bigcup_{i=1}^t C_i, \quad \text{where } C_i^2 \subset C$$

(We follow the treatment in Ng's thesis) Assume GRH throughout. Notation:

$$E(x; C) := \frac{\log x}{\sqrt{x}} \left(\frac{|G|}{|C|} \pi(x; C) - \pi(x; K) \right)$$

$$\psi(x, \chi) := \sum_{\substack{N \mathfrak{p}^m \le x, \mathfrak{p} \text{ unramified}}} \chi(\operatorname{Frob}_{\mathfrak{p}}^m) \log(N \mathfrak{p})$$

$$sq^{-1}(C) := \bigcup_{i=1}^t C_i, \quad \text{where } C_i^2 \subset C$$

Lemma 3 (Ng, 2000)

$$E(x;C) = \left(1 - \frac{|sq^{-1}(C)|}{|C|}\right) - \sum_{\chi \neq \chi_{0}} \overline{\chi(C_{1})} \frac{\psi(x,\chi)}{\sqrt{x}} + O\left(\frac{1}{x}\right)$$

To race between two conjugacy classes,

$$E_{C_{1}-C_{2}}(x) := E(x; C_{1}) - E(x; C_{2})$$

= $c(C_{2}) - c(C_{1}) - \sum_{\chi \neq \chi_{0}} (\overline{\chi(C_{1})} - \overline{\chi(C_{2})}) \sum_{0 < |\gamma_{\chi}| \le X} \frac{x^{i\gamma_{\chi}}}{\frac{1}{2} + i\gamma_{\chi}}$ (1)
+ $O\left(\frac{\sqrt{x}\log^{2} X}{X} + \frac{1}{\log x}\right)$

where $c(C_i) = c_{sq}(C_i) + c_{\frac{1}{2}}(C_i)$ with

$$egin{aligned} c_{sq}(\mathcal{C}) &= -1 + rac{|sq^{-1}(\mathcal{C})|}{|\mathcal{C}|} \ c_{rac{1}{2}}(\mathcal{C}) &= 2\sum_{\chi
eq 1} \overline{\chi}(\mathcal{C})\eta_{\chi} \end{aligned}$$

and $\eta_{\chi} = \operatorname{ord}_{s=\frac{1}{2}} L(s, \chi).$

Image: A matrix and a matrix

프 에 에 프 어

To race between two conjugacy classes,

$$E_{C_1-C_2}(x) := E(x; C_1) - E(x; C_2)$$

= $c(C_2) - c(C_1) - \sum_{\chi \neq \chi_0} (\overline{\chi(C_1)} - \overline{\chi(C_2)}) \sum_{0 < |\gamma_{\chi}| \le X} \frac{x^{i\gamma_{\chi}}}{\frac{1}{2} + i\gamma_{\chi}}$ (1)
+ $O\left(\frac{\sqrt{x}\log^2 X}{X} + \frac{1}{\log x}\right)$

where $c(C_i) = c_{sq}(C_i) + c_{\frac{1}{2}}(C_i)$ with

$$c_{sq}(C) = -1 + \frac{|sq^{-1}(C)|}{|C|}$$
$$c_{\frac{1}{2}}(C) = 2\sum_{\chi \neq 1} \overline{\chi}(C)\eta_{\chi}$$

and $\eta_{\chi} = \operatorname{ord}_{s=\frac{1}{2}} L(s, \chi)$. The term $c(C_i)$ is the bias factor. There is bias factor c_{sq} in classical Chebyshev bias but not $c_{\frac{1}{2}}$.

Kin Ming Tsang (UBC)

June 21, 2024

14/24

S_3 Mod 2 Example

We work with the case $Gal(L/K) = S_3$.

Let $G = \text{Gal}(L/\mathbb{Q}) = S_3$. There are three conjugacy classes in this group, namely

 $C_1 = \{(1)\}, \quad C_2 = \{(12), (13), (23)\}, \quad \text{and} \quad C_3 = \{(123), (132)\}.$

イロト イポト イヨト イヨト

One more interesting observation 000000

S_3 Mod 2 Example

We work with the case $Gal(L/K) = S_3$. Let $G = Gal(L/\mathbb{Q}) = S_3$. There are three conjugacy classes in this group, namely

 $C_1=\{(1)\}, \quad C_2=\{(12),(13),(23)\}, \quad \text{and} \quad C_3=\{(123),(132)\}.$

Straight forward computation:

$$C_1^2 = C_1, \quad C_2^2 = C_1 \quad \text{and} \quad C_3^2 = C_3$$

and hence

$$\begin{aligned} -1 + \frac{|sq^{-1}(C_1)|}{|C_1|} &= 3; \quad -1 + \frac{|sq^{-1}(C_2)|}{|C_2|} = -1, \\ -1 + \frac{|sq^{-1}(C_3)|}{|C_3|} &= 0 \end{aligned}$$

This is not quite what we want!

Kin Ming Tsang (UBC)

June 21, 2024

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We want to group conjugacy class according to the mod 2 behavior. i.e. want to race $C_1 \cup C_2$ vs C_3 corresponding to 0 vs 1 mod 2.

Image: Image:

We want to group conjugacy class according to the mod 2 behavior. i.e. want to race $C_1 \cup C_2$ vs C_3 corresponding to 0 vs 1 mod 2. We can also calculate the bias terms with union of conjugacy classes. Let $C_{2,0} = C_1 \cup C_2$ and $C_{2,1} = C_3$. Then, one can calculate

$$-1+rac{|sq^{-1}(\mathcal{C}_{2,0})|}{|\mathcal{C}_{2,0}|}=0, \hspace{1em} ext{and} \hspace{1em} -1+rac{|sq^{-1}(\mathcal{C}_{2,1})|}{|\mathcal{C}_{2,1}|}=0$$

We have no bias coming from the term c_{sq} .

We want to group conjugacy class according to the mod 2 behavior. i.e. want to race $C_1 \cup C_2$ vs C_3 corresponding to 0 vs 1 mod 2. We can also calculate the bias terms with union of conjugacy classes. Let $C_{2,0} = C_1 \cup C_2$ and $C_{2,1} = C_3$. Then, one can calculate

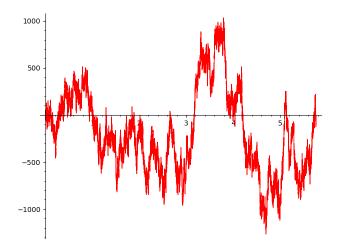
$$-1+rac{|sq^{-1}(C_{2,0})|}{|C_{2,0}|}=0, \quad ext{and} \quad -1+rac{|sq^{-1}(C_{2,1})|}{|C_{2,1}|}=0$$

We have no bias coming from the term c_{sq} . We then have to estimate bias from $c_{\frac{1}{2}}$ term. In S_3 , we do not expect there is any bias from $c_{\frac{1}{2}}$.

< □ > < 同 > < 回 > < 回 > < 回 >

One more interesting observation

37.b1 mod 2 race



LMFDB 37.b1; $\ell = 2$, $r_1 = 0$, $r_{-1} = 1$ with suitable weightings.

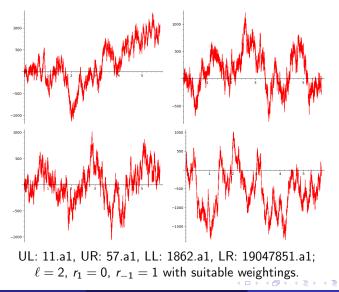
Kin Ming Tsang (UBC)

Elliptic Curve Prime Race

June 21, 2024

One more interesting observation

more mod 2 race



Kin Ming Tsang (UBC)

Elliptic Curve Prime Race

June 21, 2024

1 Story begins

- 2 Race problem
- 3 One more interesting observation

Story again

Story begins when we want to find more $G = S_3$ examples. It happens when we plot mod 3 for elliptic curves E/\mathbb{Q} , which has torsion subgroup $\mathbb{Z}/3\mathbb{Z}$.

Image: A matrix and a matrix

Story again

Story begins when we want to find more $G = S_3$ examples. It happens when we plot mod 3 for elliptic curves E/\mathbb{Q} , which has torsion subgroup $\mathbb{Z}/3\mathbb{Z}$.

Not interesting: $a_p \equiv p+1 \mod 3$. In fact, we will have a plot C_{+1} vs C_{-1} , where

$$egin{aligned} \mathcal{C}_{+1} &:= \mathcal{C}_1 \cup \mathcal{C}_3 = \{(1), (123), (132)\} \ \mathcal{C}_{-1} &:= \mathcal{C}_2 = \{(12), (13), (23)\}. \end{aligned}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Story again

Story begins when we want to find more $G = S_3$ examples. It happens when we plot mod 3 for elliptic curves E/\mathbb{Q} , which has torsion subgroup $\mathbb{Z}/3\mathbb{Z}$.

Not interesting: $a_p \equiv p+1 \mod 3$. In fact, we will have a plot C_{+1} vs C_{-1} , where

$$egin{aligned} \mathcal{C}_{+1} &:= \mathcal{C}_1 \cup \mathcal{C}_3 = \{(1), (123), (132)\} \ \mathcal{C}_{-1} &:= \mathcal{C}_2 = \{(12), (13), (23)\}. \end{aligned}$$

Question: Is it all such race between C_{+1} vs C_{-1} in S_3 is just prime race?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 4

Let $G = \text{Gal}(L/\mathbb{Q}) = S_3$. Let d be the discriminant of any of the three cubic subfields of L over \mathbb{Q} . Denote

$$C_{+1} := C_1 \cup C_3 = \{(1), (123), (132)\}$$

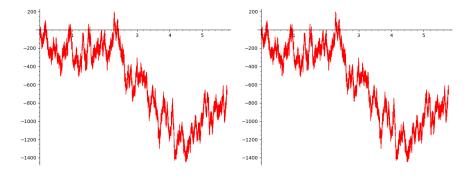
 $C_{-1} := C_2 = \{(12), (13), (23)\}.$

the union of conjugacy classes of S_3 . The race between C_{+1} vs C_{-1} are equivalent to the prime race between quadratic residue vs quadratic non-residue modulo |d|.

< □ > < 同 > < 回 > < 回 > < 回 >

One more interesting observation $_{\texttt{OOOOOO}}$

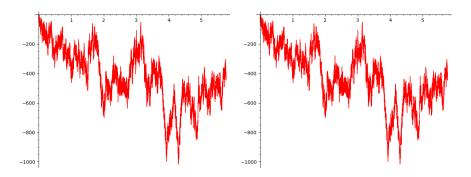
plots



LHS: Galois race of defining polynomial $f(x) = x^3 - x^2 + 1$, D = -23; RHS: residue vs non-residue prime mod 23. They are the same.

- E - N

▲ 西型



LHS: Galois race of defining polynomial $f(x) = x^3 - x^2 - 3x - 3$, D = -300; RHS: residue vs non-residue prime mod 300. They are the same.

Thank you!

Kin Ming Tsang (UBC)

Elliptic Curve Prime Race

June 21, 2024

Image: A matrix

► < ∃ ►</p>