Lethbridge Number Theory and Combinatorics Seminar

THE SIZE FUNCTION FOR IMAGINARY CYCLIC SEXTIC FIELDS

Ha Tran, Peng Tian, and Amy Feaver

Concordia University of Edmonton, East China University of Science and Technology, Gordon College (Wenham, MA)

November 28, 2023

Content

Premilinaries

Lattices and ideal lattices The size function for lattices The size function for a number field The Arakelov class group Pic_F^0

The conjecture of van der Geer and Schoof

Main ideas to prove the conjecture for imaginary cyclic sextic fields

Let F be a number field with discriminant Δ and the ring of integers O_F.

Let F be a number field with discriminant ∆ and the ring of integers O_F.

Let F be a number field with discriminant ∆ and the ring of integers O_F.

• Let
$$\sigma_1, \ldots, \sigma_{r_1}, \sigma_{r_1+1}, \ldots, \sigma_{r_1+r_2}$$
 be $r_1 + r_2$ embeddings of F .

• Denote by
$$\Phi = (\sigma_1, ..., \sigma_{r_1+r_2})$$
. Then

 $\Phi: F \hookrightarrow \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ takes $x \in F$ to $(\sigma_i(x))_i$.

- A lattice is a discrete additive subgroup of an Euclidean space.
 Ex: Z^m ⊂ R^m.
- Ex: Let $F = \mathbb{Q}(\sqrt{5})$. Then $O_F = \mathbb{Z} \oplus (1 + \sqrt{5})/2\mathbb{Z}$.

A lattice is a discrete additive subgroup of an Euclidean space.
 Ex: Z^m ⊂ R^m.

Ex: Let $F = \mathbb{Q}(\sqrt{5})$. Then $O_F = \mathbb{Z} \oplus (1 + \sqrt{5})/2\mathbb{Z}$. What $\Phi(O_F)$ looks like?

A lattice is a discrete additive subgroup of an Euclidean space.
 Ex: Z^m ⊂ ℝ^m.

Ex: Let $F = \mathbb{Q}(\sqrt{5})$. Then $O_F = \mathbb{Z} \oplus (1 + \sqrt{5})/2\mathbb{Z}$. What $\Phi(O_F)$ looks like?

4 / 26

A lattice is a discrete additive subgroup of an Euclidean space.
 Ex: Z^m ⊂ ℝ^m.

Ex: Let $F = \mathbb{Q}(\sqrt{5})$. Then $O_F = \mathbb{Z} \oplus (1 + \sqrt{5})/2\mathbb{Z}$. Then $\Phi(O_F) = \Phi(1)\mathbb{Z} \oplus \Phi((1 + \sqrt{5})/2)\mathbb{Z}$ is a lattice in \mathbb{R}^2 .

A lattice is a discrete additive subgroup of an Euclidean space. Ex: Z^m ⊂ ℝ^m.

Proposition

Let *I* be a factional ideal of *F*. Then $\Phi(I)$ is a lattice in \mathbb{R}^n .

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

- ► *I* is a (fractional) *O_F*-ideal and
- ► $q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

- ► I is a (fractional) O_F-ideal and
- ► $q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.

Let *I* be a factional ideal of *F* and let $u = (u_i)_i \in (\mathbb{R}_{>0})^n$.

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

► $q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.

Let *I* be a factional ideal of *F* and let $u = (u_i)_i \in (\mathbb{R}_{>0})^n$. Define $q_u(x, y) = \langle u\Phi(x), u\Phi(y) \rangle$ for any $x, y \in I$.

$$||x||_u^2 = q_u(x,x) = ||u\Phi(x)||^2 = \sum_{i=1}^n u_i^2 [\sigma_i(x)]^2.$$

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

► $q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.

Let *I* be a factional ideal of *F* and let $u = (u_i)_i \in (\mathbb{R}_{>0})^n$. Define $q_u(x, y) = \langle u\Phi(x), u\Phi(y) \rangle$ for any $x, y \in I$.

$$||x||_{u}^{2} = q_{u}(x,x) = ||u\Phi(x)||^{2} = \sum_{i=1}^{n} u_{i}^{2} [\sigma_{i}(x)]^{2}.$$

Then (I, q_u) is an ideal lattice.

The size function for lattices

Let *L* be a lattice of \mathbb{R}^n .

$$k^{0}(L) := \sum_{x \in L} e^{-\pi ||x||^{2}}, \qquad h^{0}(L) = \log(k^{0}(L)).$$

Similarly, h^0 is defined for the ideal lattice (I, q_u) .

$$k^{0}(I, q_{u}) = \sum_{x \in I} e^{-\pi ||x||_{u}^{2}}, \qquad h^{0}(I, q_{u}) = \log(k^{0}(I, q_{u})).$$

Similarly, h^0 is defined for the ideal lattice (I, q_u) .

$$k^{0}(I, q_{u}) = \sum_{x \in I} e^{-\pi ||x||_{u}^{2}}, \qquad h^{0}(I, q_{u}) = \log(k^{0}(I, q_{u})).$$

Definition

• The pair D = (I, u) is called an Arakelov divisor of F.

Similarly, h^0 is defined for the ideal lattice (I, q_u) .

$$k^{0}(I, q_{u}) = \sum_{x \in I} e^{-\pi ||x||_{u}^{2}}, \qquad h^{0}(I, q_{u}) = \log(k^{0}(I, q_{u})).$$

Definition

- The pair D = (I, u) is called an Arakelov divisor of F.
- (I, q_u) is also called the ideal lattice associated to D.

Similarly, h^0 is defined for the ideal lattice (I, q_u) .

$$k^{0}(I, q_{u}) = \sum_{x \in I} e^{-\pi ||x||_{u}^{2}}, \qquad h^{0}(I, q_{u}) = \log(k^{0}(I, q_{u})).$$

Definition

- The pair D = (I, u) is called an Arakelov divisor of F.
- (I, q_u) is also called the ideal lattice associated to D.
 h⁰(D) := h⁰(I, q_u).

Analogies

Algebraic curve

- Divisor D.
- Principal divisor.
- Picard group.
- Canonical divisor κ .
- dimension $\ell(D)$.
- Riemann-Roch theorem: $\ell(D) - \ell(\kappa - D) =$ $\deg(D) - (g - 1).$

Number field F^a

^avan der Geer and Schoof (1999)

Analogies

Algebraic curve

- Divisor D.
- Principal divisor.
- Picard group.
- Canonical divisor κ.
- dimension $\ell(D)$.
- Riemann-Roch theorem: $\ell(D) - \ell(\kappa - D) =$ $\deg(D) - (g - 1).$

Number field F^a

- Arakelov divisor D = (I, u).
- Principal Arakelov divisor.
- Arakelov class group $\operatorname{Pic}_{F}^{0}$.
- The inverse different.
- ▶ size function of F: $h^0(D)$
- Riemann–Roch theorem: $h^0(D) - h^0(\kappa - D) =$ $\deg(D) - \frac{1}{2} \log |\Delta|.$

^avan der Geer and Schoof (1999)

イロン 不得 とうほう イロン 二日

The Arakelov class group $\operatorname{Pic}_{F}^{0}$

Arakelov divisor D = (I, u) where I is a fractional ideal of F and u = (u_i) ∈ (ℝ_{>0})^{r₁+r₂}.

Arakelov divisor D = (I, u) where I is a fractional ideal of F and u = (u_i) ∈ (ℝ_{>0})^{r₁+r₂}.

$$\blacktriangleright \deg(D) := -\log(N(I)\prod_i u_i).$$

Arakelov divisor D = (I, u) where I is a fractional ideal of F and u = (u_i) ∈ (ℝ_{>0})^{r₁+r₂}.

•
$$\deg(D) := -\log(N(I)\prod_i u_i).$$

The set of all Arakelov divisors of degree 0 form a group, denoted by Div_F⁰.

Arakelov divisor D = (I, u) where I is a fractional ideal of F and u = (u_i) ∈ (ℝ_{>0})^{r₁+r₂}.

•
$$\deg(D) := -\log(N(I)\prod_i u_i).$$

- The set of all Arakelov divisors of degree 0 form a group, denoted by Div_F⁰.
- A principal Arakelov divisor has the form (I, u) where $I = x^{-1}O_F$ and $u = |\Phi(x)| = (|\sigma_i(x)|)_i$ and $x \in F^{\times}$.

Arakelov divisor D = (I, u) where I is a fractional ideal of F and u = (u_i) ∈ (ℝ_{>0})^{r₁+r₂}.

•
$$\deg(D) := -\log(N(I)\prod_i u_i).$$

- The set of all Arakelov divisors of degree 0 form a group, denoted by Div_F⁰.
- A principal Arakelov divisor has the form (I, u) where $I = x^{-1}O_F$ and $u = |\Phi(x)| = (|\sigma_i(x)|)_i$ and $x \in F^{\times}$.
- The Arakelov class group Pic⁰_F is the quotient of Div⁰_F by its subgroup of principal divisors.

The structure of Pic_F^0

$$O_F^{\times}: \text{ the unit group of } O_F.$$

$$\mathcal{H} = \{(x_i) \in \mathbb{R}^{r_1} \times C^{r_2}: (x_1 + \dots + x_{r_1}) + 2(x_{r_1+1} + \dots + x_{r_1+r_2}) = 0\}.$$

$$\Lambda_F := \{(\log |\sigma_i(x)|)_i : x \in O_F^{\times}\} \subseteq \mathcal{H} \text{ - the log unit lattice of } F.$$

Proposition

 $\operatorname{Pic}_{F}^{0} \longrightarrow \{ \text{isometry classes of ideal lattices of covolume } \sqrt{\Delta} \}$ the class of $D = (I, u) \longmapsto$ the isometry class of (I, q_u) is a bijection. Moreover, the following sequence is exact.

$$0 \longrightarrow \mathcal{H}/\Lambda_F \longrightarrow \operatorname{Pic}_F^0 \longrightarrow Cl_F \longrightarrow 0.$$

The following sequence is exact.

If [D] is on the principal (hyper)torus of Pic⁰_F, then ∃u such that log u = (log(u_i))_i ∈ H/Λ_F and [D] = [(O_F, u)].
 h⁰ is well defined on Pic⁰_F.

At which class of ideal lattices in Pic_F^0 that h^0 attains its maximum?

At which class of ideal lattices in Pic_F^0 that h^0 attains its maximum?

Let K be a real quadratic field (Galois over \mathbb{Q}) or quadratic extension of an imaginary quadratic field k (Galois/ k). The origin is the trivial ideal lattice (O_K , 1).

At which class of ideal lattices in Pic_F^0 that h^0 attains its maximum?

Let K be a cyclic cubic field or an imaginary cyclic sextic field (Galois over \mathbb{Q}).

The origin is the trivial ideal lattice $(O_{\mathcal{K}}, 1)$.

Conjecture. Let K be a number field that is Galois over \mathbb{Q} or over an imaginary quadratic field. Then the function h^0 on $\operatorname{Pic}_{K}^{0}$ assumes its maximum on the trivial class $(O_{K}, 1)$.

Conjecture. Let K be a number field that is Galois over \mathbb{Q} or over an imaginary quadratic field. Then the function h^0 on $\operatorname{Pic}_{K}^{0}$ assumes its maximum on the trivial class $(O_K, 1)$.

Results. The conjecture was proved for number fields of degree *n* and unit rank *r*:

- ▶ n = 2, r = 0, 1: Francini (2001).
- n = 4, r = 1: (2014) quadratic extensions of imaginary quadratic fields.
- n = 3, r = 2: (2016) cyclic cubic fields.
- ▶ n = 6, r = 2: (2021) imaginary cyclic sextic fields (this talk).

Let F be an imaginary cylic sextic field with discriminant Δ and the ring of integers O_F.

• $\sigma_1, \sigma_2, \sigma_3$: 3 complex embeddings of *F* (up to conjuate).

The log unit lattice of F

F: imaginary cyclic sextic field.

$$\Lambda_F := \{(\log |\sigma_i(x)|)_i : x \in O_F^{\times}\}$$

- the log unit lattice of F - is
hexagonal.

The log unit lattice Λ_F .

 Prove the conjecture: [D] is not on the principal torus

$$k^{0}(D) = 1 + \Sigma_{1}(I, u) + \Sigma_{2}(I, u) + \Sigma_{3}(I, u), \text{ where}$$

$$\Sigma_{1}(I, u) = \sum_{f \in I, \|uf\|^{2} < 6 \cdot 2^{1/3}} e^{-\pi \|uf\|^{2}},$$

$$\Sigma_{2}(I, u) = \sum_{f \in I, 6 \cdot 2^{1/3} \le \|uf\|^{2} \le 6 \cdot 3^{1/3}} e^{-\pi \|uf\|^{2}},$$

$$\Sigma_{3}(I, u) = \sum_{f \in I, \|uf\|^{2} \ge 6 \cdot 3^{1/3}} e^{-\pi \|uf\|^{2}}.$$

Prove the conjecture: [D] is not on the principal torus

$$k^{0}(D) = 1 + \Sigma_{1}(I, u) + \Sigma_{2}(I, u) + \Sigma_{3}(I, u), \text{ where}$$

$$\Sigma_{1}(I, u) = \sum_{f \in I, \|uf\|^{2} < 6 \cdot 2^{1/3}} e^{-\pi \|uf\|^{2}},$$

$$\Sigma_{2}(I, u) = \sum_{f \in I, 6 \cdot 2^{1/3} \le \|uf\|^{2} \le 6 \cdot 3^{1/3}} e^{-\pi \|uf\|^{2}},$$

$$\Sigma_{3}(I, u) = \sum_{f \in I, \|uf\|^{2} \ge 6 \cdot 3^{1/3}} e^{-\pi \|uf\|^{2}}.$$

Show that $h(O_F, 1) > h(I, u)$ for all $[(I, u)] \neq [(O_F, 1)]$.

Prove the conjecture: [D] is not on the principal torus

$$k^{0}(D) = 1 + \Sigma_{1}(I, u) + \Sigma_{2}(I, u) + \Sigma_{3}(I, u), \text{ where}$$

$$\Sigma_{1}(I, u) = \sum_{f \in I, \|uf\|^{2} < 6 \cdot 2^{1/3}} e^{-\pi \|uf\|^{2}},$$

$$\Sigma_{2}(I, u) = \sum_{f \in I, 6 \cdot 2^{1/3} \le \|uf\|^{2} \le 6 \cdot 3^{1/3}} e^{-\pi \|uf\|^{2}},$$

$$\Sigma_{3}(I, u) = \sum_{f \in I, \|uf\|^{2} \ge 6 \cdot 3^{1/3}} e^{-\pi \|uf\|^{2}}.$$

Show that $h(O_F, 1) > h(I, u)$ for all $[(I, u)] \neq [(O_F, 1)]$.

1) [D] is not on the principal torus:

$$\begin{split} \Sigma_1(I,u) &= 0 \text{ (since } \|uf\|^2 \geq 6 \cdot 2^{1/3}, \forall f \in I \setminus \{0\}). \\ \Sigma_3(I,u) &< 2.605 \cdot 10^{-9} \text{ (bound for } \# \text{ vectors of bounded length in a rank 6 lattice).} \\ \Sigma_2(I,u) &\leq 6(\#\mu_F)e^{6\cdot 2^{1/3}} \text{ (} \leq 6(\#\mu_F) \text{ elements in the sum).} \end{split}$$

$$k^{0}(I, u) \leq 6(\#\mu_{F})e^{-6\cdot 2^{1/3}\pi} + 2.605\cdot 10^{-9} < 1 + (\#\mu_{F})e^{-6\pi} < k^{0}(O_{F}, 1).$$

Prove the conjecture: 2) [D] is on the principal torus

Assume that [D] has the form [(OF, u)], for some $u = (u_1, u_2, u_3) \in (\mathbb{R}_+)^3$ and $w = \log(u) = (\log u_1, \log u_2, \log u_3) \in \mathcal{H}/\Lambda_F$. \mathcal{F} is the fundamental domain of Λ_F .

1. Idea 1: Choose $w \in \mathcal{F}$.

Prove the conjecture: 2) [D] is on the principal torus

Assume that [D] has the form [(OF, u)], for some $u = (u_1, u_2, u_3) \in (\mathbb{R}_+)^3$ and $w = \log(u) = (\log u_1, \log u_2, \log u_3) \in \mathcal{H}/\Lambda_F$. \mathcal{F} is the fundamental domain of Λ_F .

1. Idea 1: Choose $w \in \mathcal{F}$.

We divide into 2 cases:

Prove the conjecture: 2) [D] is on the principal torus

Assume that [D] has the form [(OF, u)], for some $u = (u_1, u_2, u_3) \in (\mathbb{R}_+)^3$ and $w = \log(u) = (\log u_1, \log u_2, \log u_3) \in \mathcal{H}/\Lambda_F$. \mathcal{F} is the fundamental domain of Λ_F .

1. Idea 1: Choose $w \in \mathcal{F}$.

We divide into 2 cases:

- 2a) When $||w|| \ge 0.24163$: find tight upper bounds for Σ_i and so for $k^0(O_F, u)$ similar to the non principal case.
- 2b) When ||w|| < 0.24163: the above bounds do not work.

Idea 2. "Amplify" the difference¹: To prove that $k^0(O_F, u) - k^0(O_F, 1) < 0$, we prove

$$C = rac{k^0(O_F, u) - k^0(O_F, 1)}{\|w\|^2} < 0.$$

Idea 2. "Amplify" the difference¹: To prove that $k^0(O_F, u) - k^0(O_F, 1) < 0$, we prove

$$C = \frac{k^0(O_F, u) - k^0(O_F, 1)}{\|w\|^2} < 0.$$

Write $C = \sum_{0 \neq f \in O_F} G(u, f) = T_1(u) + T_2(u) + T_3(u)$ where

$$T_1(u) = \sum_{f \in \mu_F} G(u, f), \qquad T_2(u) = \sum_{f \in O_F, ||f||^2 \ge 22} G(u, f)$$

$$T_3(u) = \sum_{0 \neq f \in O_F \setminus \mu_F, \|f\|^2 < 22} G(u, f).$$

 $T_1(u)$ is easy to bound.

¹Schoof's idea

Idea 3. Using Maclaurin expansion of G(u, f) and its the symmetry ² to bound for $T_2(u) = \sum_{f \in O_F, ||f|| \ge 22} G(u, f)$.

For all $f \in O_F$:

$$G(u,f) \leq 4\pi^2 \|f^2\|^2 e^{-\pi \|f\|^2} \left(1 + \frac{1}{2} e^{2\pi \|w\| \|f^2\|}\right).$$

In particular, if $f \in O_F$ with $||f||^2 \ge 22$ then

$$G(u, f) \leq 2\pi^2 \left(e^{-(\pi - 2/7) \|f\|^2} + \frac{1}{2} e^{-(\pi - 2\pi \|w\| - 2/7) \|f\|^2} \right)$$

²This is symmetric since F is cyclic.

K: cyclic cubic subfield of F of conductor p.

Idea 4. Enumerate all possible F such that there exist short elements to bound for $T_3(u) = \sum_{0 \neq f \in O_F \setminus \mu_F, ||f||^2 < 22} G(u, f)$.

K: cyclic cubic subfield of F of conductor p.

Idea 4. Enumerate all possible F such that there exist short elements to bound for $T_3(u) = \sum_{0 \neq f \in O_F \setminus \mu_F, ||f||^2 < 22} G(u, f)$.

New result: If $0 \neq f \in O_F \setminus \mu_F : ||f||^2 < 22$, then

- ▶ $f \in O_K \cup O_k$, or (Enumerate all such K, k and then all f.)
- ▶ $f \in O_F \setminus (O_K \cup O_k \cup \mu_F)$, and $d \le 22$ & $p \le 61$. (Enumerate all such F and then all f.)

< ロ > < 同 > < 回 > < 回 >

PS: if time permits

For any
$$f \in O_F$$
, we define $f_i = |\tau_i(f)|$, $i \in \{1, 2, 3\}$. Then
 $\|uf\|^2 = 2\left(e^{2x}|\tau_1(f)|^2 + e^{2y}|\tau_2(f)|^2 + e^{2z}|\tau_3(f)|^2\right)$
 $= 2\left(f_1^2e^{2x} + f_2^2e^{2y} + f_3^2e^{2z}\right).$

For $f \in O_F$ we now define

$$G(u, f) = e^{-\pi ||f||^2} G_2(f, u) / ||w||^2,$$

where

$$\begin{array}{ll} G_1(u,f) &= e^{-\pi [\|uf\|^2 - \|f\|^2]} - 1 = e^{-2\pi [(e^{2x} - 1)f_1^2 + (e^{2y} - 1)f_2^2 + (e^{2z} - 1)f_3^2]} - 1 \\ G_2(u,f) &= G_1(u,\tau_1(f)) + G_1(u,\tau_2(f)) + G_1(u,\tau_3(f)). \end{array}$$

PS2: if time still permits

Lemma

Let L be a lattice of rank 6 and λ be the length of its shortest vectors. Then for $M \ge \lambda^2 \ge a^2 > 0$ and $\xi > 0$, one has

$$\sum_{\substack{\mathbf{x}\in L\\ \|\mathbf{x}\|^2 \geq M}} e^{-\xi \|\mathbf{x}\|^2} \leq \xi \int_M^\infty \left(\left(\frac{2\sqrt{t}}{a} + 1\right)^6 - \left(\frac{2\sqrt{M}}{a} - 1\right)^6 \right) e^{-\xi t} \, \mathrm{d}t.$$

Corollary If $\lambda^2 \ge 6$, then

$$\sum_{\substack{\mathsf{x}\in L\\ \|\mathsf{x}\|^2\geq 6\cdot 3^{1/3}}} e^{-\pi\|\mathsf{x}\|^2} < 2.6049\cdot 10^{-9}, \qquad \sum_{\substack{\mathsf{x}\in L\\ \|\mathsf{x}\|^2\geq 22}} e^{-(\pi-2/7)\|\mathsf{x}\|^2} < 10^{-23},$$

 $\sum_{\mathbf{x}\in L, \|\mathbf{x}\|^2 \ge 22} e^{-(\pi - 2\sqrt{2} \cdot 0.170856 \ \pi - 2/7)\|\mathbf{x}\|^2} < 2.19277 \cdot 10^{-9}.$

Thank you!

Thank you so much for your attention!

References

Paolo Francini.

The size function h^0 for quadratic number fields. J. Théor. Nombres Bordeaux, 13(1):125–135, 2001.

Gerard van der Geer and René Schoof.

Effectivity of Arakelov divisors and the theta divisor of a number field. Selecta Math. (N.S.), 6(4):377–398, 2000.

Richard P. Groenewegen.

The size function for number fields. Doctoraalscriptie, Universiteit van Amsterdam, 1999.

René Schoof.

Computing Arakelov class groups.

In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 447–495. Cambridge Univ. Press, Cambridge, 2008.

Ha T. N. Tran.

The size function of quadratic extensions of complex quadratic fields. Journal de théorie des nombres de Bordeaux, 29 no. 1 (2017), p. 243-259.

Ha T. N. Tran and Peng Tian.

The size function for cyclic cubic fields. Int. J. Number Theory, 14:399–415, 2018.

Ha T. N. Tran, Peng Tian and Amy Feaver.

The size function for imaginary cyclic sextic fields to be appeared in *Journal de théorie des nombres de Bordeaux*.