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Notations

I Let F be a number field with discriminant ∆ and the ring of
integers OF .

I Let σ1, . . . , σr1 , σr1+1, . . . , σr1+r2 be r1 + r2 embeddings of F .

I Denote by Φ = (σ1, ..., σr1+r2). Then

Φ : F ↪→ Rr1 × Cr2 takes x ∈ F to (σi (x))i .
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Lattices and ideal lattices

I A lattice is a discrete additive subgroup of an Euclidean space.
Ex: Zm ⊂ Rm.
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Lattices and ideal lattices
I A lattice is a discrete additive subgroup of an Euclidean space.

Ex: Zm ⊂ Rm.

Ex: Let F = Q(
√

5). Then OF = Z⊕ (1 +
√

5)/2Z. Then
Φ(OF ) = Φ(1)Z⊕ Φ((1 +

√
5)/2)Z is a lattice in R2.
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Lattices and ideal lattices

I A lattice is a discrete additive subgroup of an Euclidean space.
Ex: Zm ⊂ Rm.

Proposition

Let I be a factional ideal of F . Then Φ(I ) is a lattice in Rn.
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Ideal lattices

Definition (Ideal lattices)

An ideal lattice is a lattice (I , q), where

I I is a (fractional) OF -ideal and

I q : I × I −→ R is a non-degenerate symmetric bilinear form st
q(λx , y) = q(x , λ̄y) (Hermitian property)
for all x , y ∈ I and for all λ ∈ OF .

Let I be a factional ideal of F and let u = (ui )i ∈ (R>0)n.
Define qu(x , y) = 〈uΦ(x), uΦ(y)〉 for any x , y ∈ I .

‖x‖2
u = qu(x , x) = ‖uΦ(x)‖2 =

n∑
i=1

u2
i [σi (x)]2.

Then (I , qu) is an ideal lattice.
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The size function for lattices

Let L be a lattice of Rn.

k0(L) :=
∑
x∈L

e−π‖x‖
2
, h0(L) = log(k0(L)).
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The size function for a number field

Similarly, h0 is defined for the ideal lattice (I , qu).

k0(I , qu) =
∑
x∈I

e−π‖x‖
2
u , h0(I , qu) = log(k0(I , qu)).

Definition
I The pair D = (I , u) is called an Arakelov divisor of F .

I (I , qu) is also called the ideal lattice associated to D.

I h0(D) := h0(I , qu).
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Analogies

Algebraic curve

I Divisor D.

I Principal divisor.

I Picard group.

I Canonical divisor κ.

I dimension `(D).

I Riemann–Roch theorem:
`(D)− `(κ− D) =
deg(D)− (g − 1).

Number field F a

I Arakelov divisor D = (I , u).

I Principal Arakelov divisor.

I Arakelov class group Pic0
F .

I The inverse different.

I size function of F : h0(D)

I Riemann–Roch theorem:
h0(D)− h0(κ− D) =
deg(D)− 1

2 log |∆|.

avan der Geer and Schoof (1999)

9 / 26



Analogies

Algebraic curve

I Divisor D.

I Principal divisor.

I Picard group.

I Canonical divisor κ.

I dimension `(D).

I Riemann–Roch theorem:
`(D)− `(κ− D) =
deg(D)− (g − 1).

Number field F a

I Arakelov divisor D = (I , u).

I Principal Arakelov divisor.

I Arakelov class group Pic0
F .

I The inverse different.

I size function of F : h0(D)

I Riemann–Roch theorem:
h0(D)− h0(κ− D) =
deg(D)− 1

2 log |∆|.

avan der Geer and Schoof (1999)

9 / 26



The Arakelov class group Pic0
F

I Arakelov divisor D = (I , u) where I is a fractional ideal of F
and u = (ui ) ∈ (R>0)r1+r2 .

I deg(D) := − log(N(I )
∏

i ui ).

I The set of all Arakelov divisors of degree 0 form a group,
denoted by Div0

F .

I A principal Arakelov divisor has the form (I , u) where
I = x−1OF and u = |Φ(x)| = (|σi (x)|)i and x ∈ F×.

I The Arakelov class group Pic0
F is the quotient of Div0

F by its
subgroup of principal divisors.
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The structure of Pic0
F

O×F : the unit group of OF .

H = {(xi ) ∈ Rr1×C r2 : (x1 +· · ·+xr1)+2(xr1+1 +· · ·+xr1+r2) = 0}.

ΛF := {(log |σi (x)|)i : x ∈ O×F } ⊆ H - the log unit lattice of F .

Proposition

Pic0
F −→ {isometry classes of ideal lattices of covolume

√
∆}

the class of D = (I , u) 7−→ the isometry class of (I , qu)
is a bijection. Moreover, the following sequence is exact.

0 −→ H/ΛF −→ Pic0
F −→ ClF −→ 0.

11 / 26



The Arakelov class group Pic0
F

The following sequence is exact.

0 −→ H/ΛF −→ Pic0
F −→ ClF −→ 0.

I If [D] is on the principal (hyper)torus of Pic0
F , then ∃u such

that log u = (log(ui ))i ∈ H/ΛF and [D] = [(OF , u)].
I h0 is well defined on Pic0

F .
12 / 26



The conjecture of van der Geer and Schoof
At which class of ideal lattices in Pic0

F that h0 attains its
maximum?

Let K be a real quadratic field (Galois over Q) or
quadratic extension of an imaginary quadratic field k (Galois/ k).
The origin is the trivial ideal lattice (OK , 1).

-2 -1 1 2

0.00001

0.00002

0.00003

0.00004
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The conjecture of van der Geer and Schoof
At which class of ideal lattices in Pic0

F that h0 attains its
maximum?

Let K be a cyclic cubic field or an imaginary cyclic sextic field
(Galois over Q).
The origin is the trivial ideal lattice (OK , 1).
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The conjecture of van der Geer and Schoof

Conjecture. Let K be a number field that is Galois over Q or over
an imaginary quadratic field. Then the function h0 on Pic0

K

assumes its maximum on the trivial class (OK , 1).
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The conjecture of van der Geer and Schoof

Conjecture. Let K be a number field that is Galois over Q or over
an imaginary quadratic field. Then the function h0 on Pic0

K

assumes its maximum on the trivial class (OK , 1).

Results. The conjecture was proved for number fields of degree n
and unit rank r :

I n = 2, r = 0, 1: Francini (2001).

I n = 4, r = 1: (2014) quadratic extensions of imaginary
quadratic fields.

I n = 3, r = 2: (2016) cyclic cubic fields.

I n = 6, r = 2: (2021) imaginary cyclic sextic fields (this talk).
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Notations

I Let F be an imaginary cylic sextic field with discriminant ∆
and the ring of integers OF .

I σ1, σ2, σ3: 3 complex embeddings of F (up to conjuate).

I Φ = (σ1, σ2, σ3) : F ↪→ C3

x ∈ F 7→ (σ1(x), σ2(x), σ3(x)).

I Let u = (u1, u2, u3) ∈ (R>0)3, for x ∈ I an ideal of F . Then

‖x‖2
u := ‖ux‖2 = 2

∑
i

u2
i |σi (x)|2.
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The log unit lattice of F

F : imaginary cyclic sextic field.

ΛF := {(log |σi (x)|)i : x ∈ O×F }
- the log unit lattice of F - is
hexagonal.

The log unit lattice ΛF .

17 / 26



Prove the conjecture: [D] is not on the principal torus

k0(D) = 1 + Σ1(I , u) + Σ2(I , u) + Σ3(I , u), where

Σ1(I , u) =
∑

f ∈I , ‖uf ‖2<6·21/3 e−π‖uf ‖
2
,

Σ2(I , u) =
∑

f ∈I , 6·21/3≤‖uf ‖2≤6·31/3 e−π‖uf ‖
2

Σ3(I , u) =
∑

f ∈I , ‖uf ‖2≥6·31/3 e−π‖uf ‖
2
.

Show that h(OF , 1) > h(I , u) for all [(I , u)] 6= [(OF , 1)].

1) [D] is not on the principal torus:

Σ1(I , u) = 0 (since ‖uf ‖2 ≥ 6 · 21/3, ∀f ∈ I\{0}).

Σ3(I , u) < 2.605 · 10−9 (bound for # vectors of bounded length in
a rank 6 lattice).

Σ2(I , u) ≤ 6(#µF )e6·21/3
(≤ 6(#µF ) elements in the sum).

k0(I , u) ≤ 6(#µF )e−6·21/3π+2.605·10−9 < 1+(#µF )e−6π < k0(OF , 1).
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Prove the conjecture: 2) [D] is on the principal torus

Assume that [D] has the form [(OF , u)], for some
u = (u1, u2, u3) ∈ (R+)3 and
w = log(u) = (log u1, log u2, log u3) ∈ H/ΛF .
F is the fundamental domain of ΛF .

1. Idea 1: Choose w ∈ F .

We divide into 2 cases:

2a) When ‖w‖ ≥ 0.24163: find
tight upper bounds for Σi

and so for k0(OF , u)
similar to the non principal
case.

2b) When ‖w‖ < 0.24163: the
above bounds do not work.

b1

b2
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Prove the conjecture: 2b) [D] is on the principal torus and
0 < ‖w‖ < 0.24163

Idea 2. “Amplify” the difference1: To prove that
k0(OF , u)− k0(OF , 1) < 0, we prove

C =
k0(OF , u)− k0(OF , 1)

‖w‖2
< 0.

Write C =
∑

06=f ∈OF
G (u, f ) = T1(u) + T2(u) + T3(u) where

T1(u) =
∑
f ∈µF

G (u, f ), T2(u) =
∑

f ∈OF ,‖f ‖2≥22

G (u, f )

T3(u) =
∑

06=f ∈OF \µF ,‖f ‖2<22

G (u, f ).

T1(u) is easy to bound.

1Schoof’s idea
20 / 26
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Prove the conjecture: 2b) [D] is on the principal torus and
0 < ‖w‖ < 0.24163

Idea 3. Using Maclaurin expansion of G (u, f ) and its the symmetry
2 to bound for T2(u) =

∑
f ∈OF ,‖f ‖≥22 G (u, f ).

For all f ∈ OF :

G (u, f ) ≤ 4π2‖f 2‖2e−π‖f ‖
2

(
1 +

1

2
e2π‖w‖‖f 2‖

)
.

In particular, if f ∈ OF with ‖f ‖2 ≥ 22 then

G (u, f ) ≤ 2π2

(
e−(π−2/7)‖f ‖2

+
1

2
e−(π−2π‖w‖−2/7)‖f ‖2

)
.

2This is symmetric since F is cyclic.
21 / 26



Prove the conjecture: 2b) [D] is on the principal torus and
0 < ‖w‖ < 0.24163

K : cyclic cubic subfield of F of conductor p.

Idea 4. Enumerate all possible F such that there exist short
elements to bound for T3(u) =

∑
06=f ∈OF \µF ,‖f ‖2<22 G (u, f ).

New result: If 0 6= f ∈ OF\µF : ‖f ‖2 < 22, then

I f ∈ OK ∪ Ok , or
(Enumerate all such K , k and then all f .)

I f ∈ OF\(OK ∪ Ok ∪ µF ), and d ≤ 22 &
p ≤ 61.
(Enumerate all such F and then all f .)

Q

k = Q(
√
d)K

F

23

2 3

22 / 26
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√
d)K

F

23
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PS: if time permits

For any f ∈ OF , we define fi = |τi (f )|, i ∈ {1, 2, 3}. Then

‖uf ‖2 = 2
(
e2x |τ1(f )|2 + e2y |τ2(f )|2 + e2z |τ3(f )|2

)
= 2

(
f 2
1 e

2x + f 2
2 e

2y + f 2
3 e

2z
)
.

For f ∈ OF we now define

G (u, f ) = e−π‖f ‖
2
G2(f , u)/‖w‖2,

where

G1(u, f ) = e−π[‖uf ‖2−‖f ‖2] − 1= e−2π[(e2x−1)f 2
1 +(e2y−1)f 2

2 +(e2z−1)f 2
3 ] − 1,

G2(u, f ) = G1(u, τ1(f )) + G1(u, τ2(f )) + G1(u, τ3(f )).
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PS2: if time still permits

Lemma
Let L be a lattice of rank 6 and λ be the length of its shortest
vectors. Then for M ≥ λ2 ≥ a2 > 0 and ξ > 0, one has

∑
x∈L
‖x‖2≥M

e−ξ‖x‖
2 ≤ ξ

∫ ∞
M

(2
√
t

a
+ 1

)6

−

(
2
√
M

a
− 1

)6
 e−ξt dt.

Corollary

If λ2 ≥ 6, then∑
x∈L

‖x‖2≥6·31/3

e−π‖x‖
2
< 2.6049·10−9,

∑
x∈L

‖x‖2≥22

e−(π−2/7)‖x‖2
< 10−23,

∑
x∈L,‖x‖2≥22

e−(π−2
√

2·0.170856 π−2/7)‖x‖2
< 2.19277·10−9.
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Thank you!

Thank you so much for your attention!
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Effectivity of Arakelov divisors and the theta divisor of a number field.
Selecta Math. (N.S.), 6(4):377–398, 2000.

Richard P. Groenewegen.

The size function for number fields.
Doctoraalscriptie, Universiteit van Amsterdam, 1999.
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