Lethbridge Number Theory and Combinatorics Seminar

THE SIZE FUNCTION FOR IMAGINARY CYCLIC SEXTIC FIELDS

Ha Tran, Peng Tian, and Amy Feaver

Concordia University of Edmonton, East China University of Science and Technology, Gordon College (Wenham, MA)

November 28, 2023

Content

Premilinaries
Lattices and ideal lattices
The size function for lattices
The size function for a number field The Arakelov class group Pic_{F}^{0}

The conjecture of van der Geer and Schoof

Main ideas to prove the conjecture for imaginary cyclic sextic fields

Notations

- Let F be a number field with discriminant Δ and the ring of integers O_{F}.

Notations

- Let F be a number field with discriminant Δ and the ring of integers O_{F}.
- Let $\sigma_{1}, \ldots, \sigma_{r_{1}}, \sigma_{r_{1}+1}, \ldots, \sigma_{r_{1}+r_{2}}$ be $r_{1}+r_{2}$ embeddings of F.

Notations

- Let F be a number field with discriminant Δ and the ring of integers O_{F}.
- Let $\sigma_{1}, \ldots, \sigma_{r_{1}}, \sigma_{r_{1}+1}, \ldots, \sigma_{r_{1}+r_{2}}$ be $r_{1}+r_{2}$ embeddings of F.
- Denote by $\Phi=\left(\sigma_{1}, \ldots, \sigma_{r_{1}+r_{2}}\right)$. Then

$$
\Phi: F \hookrightarrow \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}} \text { takes } x \in F \text { to }\left(\sigma_{i}(x)\right)_{i}
$$

Lattices and ideal lattices

- A lattice is a discrete additive subgroup of an Euclidean space. $\mathrm{Ex}: \mathbb{Z}^{m} \subset \mathbb{R}^{m}$.

Lattices and ideal lattices

- A lattice is a discrete additive subgroup of an Euclidean space. Ex: $\mathbb{Z}^{m} \subset \mathbb{R}^{m}$.
Ex: Let $F=\mathbb{Q}(\sqrt{5})$. Then $O_{F}=\mathbb{Z} \oplus(1+\sqrt{5}) / 2 \mathbb{Z}$.

Lattices and ideal lattices

- A lattice is a discrete additive subgroup of an Euclidean space. Ex: $\mathbb{Z}^{m} \subset \mathbb{R}^{m}$.
Ex: Let $F=\mathbb{Q}(\sqrt{5})$. Then $O_{F}=\mathbb{Z} \oplus(1+\sqrt{5}) / 2 \mathbb{Z}$. What $\Phi\left(O_{F}\right)$ looks like?

Lattices and ideal lattices

- A lattice is a discrete additive subgroup of an Euclidean space. Ex: $\mathbb{Z}^{m} \subset \mathbb{R}^{m}$.
Ex: Let $F=\mathbb{Q}(\sqrt{5})$. Then $O_{F}=\mathbb{Z} \oplus(1+\sqrt{5}) / 2 \mathbb{Z}$. What $\Phi\left(O_{F}\right)$ looks like?

Lattices and ideal lattices

- A lattice is a discrete additive subgroup of an Euclidean space. Ex: $\mathbb{Z}^{m} \subset \mathbb{R}^{m}$.
Ex: Let $F=\mathbb{Q}(\sqrt{5})$. Then $O_{F}=\mathbb{Z} \oplus(1+\sqrt{5}) / 2 \mathbb{Z}$. Then $\Phi\left(O_{F}\right)=\Phi(1) \mathbb{Z} \oplus \Phi((1+\sqrt{5}) / 2) \mathbb{Z}$ is a lattice in \mathbb{R}^{2}.

Lattices and ideal lattices

- A lattice is a discrete additive subgroup of an Euclidean space. Ex: $\mathbb{Z}^{m} \subset \mathbb{R}^{m}$.

Proposition
Let l be a factional ideal of F. Then $\Phi(I)$ is a lattice in \mathbb{R}^{n}.

Ideal lattices

Definition (Ideal lattices)
An ideal lattice is a lattice (I, q), where

- I is a (fractional) O_{F}-ideal and
$\checkmark q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y)=q(x, \bar{\lambda} y) \quad$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_{F}$.

Ideal lattices

Definition (Ideal lattices)
An ideal lattice is a lattice (I, q), where

- I is a (fractional) O_{F}-ideal and
$\rightarrow q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y)=q(x, \bar{\lambda} y) \quad$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_{F}$.

Let I be a factional ideal of F and let $u=\left(u_{i}\right)_{i} \in\left(\mathbb{R}_{>0}\right)^{n}$.

Ideal lattices

Definition (Ideal lattices)
An ideal lattice is a lattice (I, q), where
$-I$ is a (fractional) O_{F}-ideal and
$\rightarrow q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y)=q(x, \bar{\lambda} y) \quad$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_{F}$.

Let I be a factional ideal of F and let $u=\left(u_{i}\right)_{i} \in\left(\mathbb{R}_{>0}\right)^{n}$. Define $q_{u}(x, y)=\langle u \Phi(x), u \Phi(y)\rangle$ for any $x, y \in I$.

$$
\|x\|_{u}^{2}=q_{u}(x, x)=\|u \Phi(x)\|^{2}=\sum_{i=1}^{n} u_{i}^{2}\left[\sigma_{i}(x)\right]^{2}
$$

Ideal lattices

Definition (Ideal lattices)
An ideal lattice is a lattice (I, q), where
$-I$ is a (fractional) O_{F}-ideal and
$\rightarrow q: I \times I \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form st $q(\lambda x, y)=q(x, \bar{\lambda} y) \quad$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_{F}$.

Let I be a factional ideal of F and let $u=\left(u_{i}\right)_{i} \in\left(\mathbb{R}_{>0}\right)^{n}$. Define $q_{u}(x, y)=\langle u \Phi(x), u \Phi(y)\rangle$ for any $x, y \in I$.

$$
\|x\|_{u}^{2}=q_{u}(x, x)=\|u \Phi(x)\|^{2}=\sum_{i=1}^{n} u_{i}^{2}\left[\sigma_{i}(x)\right]^{2}
$$

Then $\left(I, q_{u}\right)$ is an ideal lattice.

The size function for lattices

Let L be a lattice of \mathbb{R}^{n}.

$$
k^{0}(L):=\sum_{x \in L} e^{-\pi\|x\|^{2}}, \quad h^{0}(L)=\log \left(k^{0}(L)\right)
$$

The size function for a number field

Similarly, h^{0} is defined for the ideal lattice $\left(I, q_{u}\right)$.

$$
k^{0}\left(I, q_{u}\right)=\sum_{x \in I} e^{-\pi\|x\|_{u}^{2}}, \quad h^{0}\left(I, q_{u}\right)=\log \left(k^{0}\left(I, q_{u}\right)\right)
$$

The size function for a number field

Similarly, h^{0} is defined for the ideal lattice $\left(I, q_{u}\right)$.

$$
k^{0}\left(I, q_{u}\right)=\sum_{x \in I} e^{-\pi\|x\|_{u}^{2}}, \quad h^{0}\left(I, q_{u}\right)=\log \left(k^{0}\left(I, q_{u}\right)\right)
$$

Definition

- The pair $D=(I, u)$ is called an Arakelov divisor of F.

The size function for a number field

Similarly, h^{0} is defined for the ideal lattice $\left(I, q_{u}\right)$.

$$
k^{0}\left(I, q_{u}\right)=\sum_{x \in I} e^{-\pi\|x\|_{u}^{2}}, \quad h^{0}\left(I, q_{u}\right)=\log \left(k^{0}\left(I, q_{u}\right)\right) .
$$

Definition

- The pair $D=(I, u)$ is called an Arakelov divisor of F.
- $\left(I, q_{u}\right)$ is also called the ideal lattice associated to D.

The size function for a number field

Similarly, h^{0} is defined for the ideal lattice $\left(I, q_{u}\right)$.

$$
k^{0}\left(I, q_{u}\right)=\sum_{x \in I} e^{-\pi\|x\|_{u}^{2}}, \quad h^{0}\left(I, q_{u}\right)=\log \left(k^{0}\left(I, q_{u}\right)\right)
$$

Definition

- The pair $D=(I, u)$ is called an Arakelov divisor of F.
- $\left(I, q_{u}\right)$ is also called the ideal lattice associated to D.
- $h^{0}(D):=h^{0}\left(I, q_{u}\right)$.

Analogies

Algebraic curve

- Divisor D.
- Principal divisor.
- Picard group.
- Canonical divisor κ.
- dimension $\ell(D)$.
- Riemann-Roch theorem:

$$
\begin{aligned}
& \ell(D)-\ell(\kappa-D)= \\
& \operatorname{deg}(D)-(g-1) .
\end{aligned}
$$

Number field $F^{\text {a }}$
${ }^{\text {a }}$ van der Geer and Schoof (1999)

Analogies

Algebraic curve

- Divisor D.
- Principal divisor.
- Picard group.
- Canonical divisor κ.
- dimension $\ell(D)$.
- Riemann-Roch theorem: $\ell(D)-\ell(\kappa-D)=$ $\operatorname{deg}(D)-(g-1)$.

Number field $F^{\text {a }}$

- Arakelov divisor $D=(I, u)$.
- Principal Arakelov divisor.
- Arakelov class group Pic_{F}^{0}.
- The inverse different.
- size function of $F: h^{0}(D)$
- Riemann-Roch theorem:
$h^{0}(D)-h^{0}(\kappa-D)=$ $\operatorname{deg}(D)-\frac{1}{2} \log |\Delta|$.
${ }^{a}$ van der Geer and Schoof (1999)

The Arakelov class group Pic_{F}^{0}

- Arakelov divisor $D=(I, u)$ where I is a fractional ideal of F and $u=\left(u_{i}\right) \in\left(\mathbb{R}_{>0}\right)^{r_{1}+r_{2}}$.

The Arakelov class group Pic_{F}^{0}

- Arakelov divisor $D=(I, u)$ where I is a fractional ideal of F and $u=\left(u_{i}\right) \in\left(\mathbb{R}_{>0}\right)^{r_{1}+r_{2}}$.
- $\operatorname{deg}(D):=-\log \left(N(I) \prod_{i} u_{i}\right)$.

The Arakelov class group Pic_{F}^{0}

- Arakelov divisor $D=(I, u)$ where I is a fractional ideal of F and $u=\left(u_{i}\right) \in\left(\mathbb{R}_{>0}\right)^{r_{1}+r_{2}}$.
- $\operatorname{deg}(D):=-\log \left(N(I) \prod_{i} u_{i}\right)$.
- The set of all Arakelov divisors of degree 0 form a group, denoted by $\operatorname{Div}_{F}^{0}$.

The Arakelov class group Pic_{F}^{0}

- Arakelov divisor $D=(I, u)$ where I is a fractional ideal of F and $u=\left(u_{i}\right) \in\left(\mathbb{R}_{>0}\right)^{r_{1}+r_{2}}$.
- $\operatorname{deg}(D):=-\log \left(N(I) \prod_{i} u_{i}\right)$.
- The set of all Arakelov divisors of degree 0 form a group, denoted by $\operatorname{Div}_{F}^{0}$.
- A principal Arakelov divisor has the form (I, u) where $I=x^{-1} O_{F}$ and $u=|\Phi(x)|=\left(\left|\sigma_{i}(x)\right|\right)_{i}$ and $x \in F^{\times}$.

The Arakelov class group Pic_{F}^{0}

- Arakelov divisor $D=(I, u)$ where I is a fractional ideal of F and $u=\left(u_{i}\right) \in\left(\mathbb{R}_{>0}\right)^{r_{1}+r_{2}}$.
- $\operatorname{deg}(D):=-\log \left(N(I) \prod_{i} u_{i}\right)$.
- The set of all Arakelov divisors of degree 0 form a group, denoted by $\operatorname{Div}_{F}^{0}$.
- A principal Arakelov divisor has the form (I, u) where $I=x^{-1} O_{F}$ and $u=|\Phi(x)|=\left(\left|\sigma_{i}(x)\right|\right)_{i}$ and $x \in F^{\times}$.
- The Arakelov class group Pic_{F}^{0} is the quotient of $\operatorname{Div}_{F}^{0}$ by its subgroup of principal divisors.

The structure of Pic_{F}^{0}

O_{F}^{\times}: the unit group of O_{F}.
$\mathcal{H}=\left\{\left(x_{i}\right) \in \mathbb{R}^{r_{1}} \times C^{r_{2}}:\left(x_{1}+\cdots+x_{r_{1}}\right)+2\left(x_{r_{1}+1}+\cdots+x_{r_{1}+r_{2}}\right)=0\right\}$.
$\Lambda_{F}:=\left\{\left(\log \left|\sigma_{i}(x)\right|\right)_{i}: x \in O_{F}^{\times}\right\} \subseteq \mathcal{H}$ - the log unit lattice of F.

Proposition

Pic ${ }_{F}^{0} \longrightarrow\{$ isometry classes of ideal lattices of covolume $\sqrt{\Delta}\}$ the class of $D=(I, u) \longmapsto$ the isometry class of $\left(I, q_{u}\right)$ is a bijection. Moreover, the following sequence is exact.

$$
0 \longrightarrow \mathcal{H} / \Lambda_{F} \longrightarrow \operatorname{Pic}_{F}^{0} \longrightarrow C_{F} \longrightarrow 0 .
$$

The Arakelov class group Pic_{F}^{0}

The following sequence is exact.

$$
0 \longrightarrow \mathcal{H} / \Lambda_{F} \longrightarrow \mathrm{Pic}_{F}^{0} \longrightarrow C l_{F} \longrightarrow 0
$$

- If $[D]$ is on the principal (hyper)torus of $\operatorname{Pic}_{F}^{0}$, then $\exists u$ such that $\log u=\left(\log \left(u_{i}\right)\right)_{i} \in \mathcal{H} / \Lambda_{F}$ and $[D]=\left[\left(O_{F}, u\right)\right]$.
- h^{0} is well defined on Pic_{F}^{0}.

The conjecture of van der Geer and Schoof

At which class of ideal lattices in Pic_{F}^{0} that h^{0} attains its maximum?

The conjecture of van der Geer and Schoof

At which class of ideal lattices in Pic_{F}^{0} that h^{0} attains its maximum?

Let K be a real quadratic field (Galois over \mathbb{Q}) or quadratic extension of an imaginary quadratic field k (Galois/ k). The origin is the trivial ideal lattice $\left(O_{K}, 1\right)$.

The conjecture of van der Geer and Schoof
At which class of ideal lattices in Pic_{F}^{0} that h^{0} attains its maximum?

Let K be a cyclic cubic field or an imaginary cyclic sextic field (Galois over \mathbb{Q}).
The origin is the trivial ideal lattice $\left(O_{K}, 1\right)$.

The conjecture of van der Geer and Schoof

Conjecture. Let K be a number field that is Galois over \mathbb{Q} or over an imaginary quadratic field. Then the function h^{0} on Pic_{K}^{0} assumes its maximum on the trivial class $\left(O_{K}, 1\right)$.

The conjecture of van der Geer and Schoof

Conjecture. Let K be a number field that is Galois over \mathbb{Q} or over an imaginary quadratic field. Then the function h^{0} on Pic_{K}^{0} assumes its maximum on the trivial class $\left(O_{K}, 1\right)$.

Results. The conjecture was proved for number fields of degree n and unit rank r :

- $n=2, r=0,1$: Francini (2001).
- $n=4, r=1$: (2014) quadratic extensions of imaginary quadratic fields.
- $n=3, r=2$: (2016) cyclic cubic fields.
- $n=6, r=2$: (2021) imaginary cyclic sextic fields (this talk).

Notations

- Let F be an imaginary cylic sextic field with discriminant Δ and the ring of integers O_{F}.
- $\sigma_{1}, \sigma_{2}, \sigma_{3}: 3$ complex embeddings of F (up to conjuate).
- $\Phi=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right): F \hookrightarrow \mathbb{C}^{3}$

$$
x \in F \mapsto\left(\sigma_{1}(x), \sigma_{2}(x), \sigma_{3}(x)\right)
$$

- Let $u=\left(u_{1}, u_{2}, u_{3}\right) \in\left(\mathbb{R}_{>0}\right)^{3}$, for $x \in I$ an ideal of F. Then

$$
\|x\|_{u}^{2}:=\|u x\|^{2}=2 \sum_{i} u_{i}^{2}\left|\sigma_{i}(x)\right|^{2}
$$

The log unit lattice of F

F : imaginary cyclic sextic field.
The log unit lattice Λ_{F}.
$\Lambda_{F}:=\left\{\left(\log \left|\sigma_{i}(x)\right|\right)_{i}: x \in O_{F}^{\times}\right\}$

- the log unit lattice of F - is hexagonal.

Prove the conjecture: $[D]$ is not on the principal torus

$$
\begin{aligned}
& \quad k^{0}(D)=1+\Sigma_{1}(I, u)+\Sigma_{2}(I, u)+\Sigma_{3}(I, u), \text { where } \\
& \Sigma_{1}(I, u)=\sum_{f \in I,\|u f\|^{2}<6 \cdot 2^{1 / 3}} e^{-\pi\|u f\|^{2}} \\
& \Sigma_{2}(I, u)=\sum_{f \in I, 6 \cdot 2^{1 / 3} \leq\|u f\|^{2} \leq 6 \cdot 3^{1 / 3}} e^{-\pi\|u f\|^{2}} \\
& \Sigma_{3}(I, u)=\sum_{f \in I,\|u f\|^{2} \geq 6 \cdot 3^{1 / 3}} e^{-\pi\|u f\|^{2}} .
\end{aligned}
$$

Prove the conjecture: $[D]$ is not on the principal torus

$$
k^{0}(D)=1+\Sigma_{1}(I, u)+\Sigma_{2}(I, u)+\Sigma_{3}(I, u), \text { where }
$$

$\Sigma_{1}(I, u)=\sum_{f \in I,\|u f\|^{2}<6 \cdot 2^{1 / 3}} e^{-\pi\|u f\|^{2}}$,
$\Sigma_{2}(I, u)=\sum_{f \in I, 6 \cdot 2^{1 / 3} \leq\|u f\|^{2} \leq 6 \cdot 3^{1 / 3}} e^{-\pi\|u f\|^{2}}$
$\Sigma_{3}(I, u)=\sum_{f \in I,\|u f\|^{2} \geq 6.3^{1 / 3}} e^{-\pi\|u f\|^{2}}$.
Show that $h\left(O_{F}, 1\right)>h(I, u)$ for all $[(I, u)] \neq\left[\left(O_{F}, 1\right)\right]$.

Prove the conjecture: $[D]$ is not on the principal torus

$$
k^{0}(D)=1+\Sigma_{1}(I, u)+\Sigma_{2}(I, u)+\Sigma_{3}(I, u), \text { where }
$$

$\Sigma_{1}(I, u)=\sum_{f \in I,\|u f\|^{2}<6 \cdot 2^{1 / 3}} e^{-\pi\|u f\|^{2}}$,
$\Sigma_{2}(I, u)=\sum_{f \in I, 6 \cdot 2^{1 / 3} \leq\|u f\|^{2} \leq 6 \cdot 3^{1 / 3}} e^{-\pi\|u f\|^{2}}$
$\Sigma_{3}(I, u)=\sum_{f \in I,\|u f\|^{2} \geq 6.3^{1 / 3}} e^{-\pi\|u f\|^{2}}$.
Show that $h\left(O_{F}, 1\right)>h(I, u)$ for all $[(I, u)] \neq\left[\left(O_{F}, 1\right)\right]$.

1) $[D]$ is not on the principal torus:
$\Sigma_{1}(I, u)=0$ (since $\|u f\|^{2} \geq 6 \cdot 2^{1 / 3}, \forall f \in I \backslash\{0\}$).
$\Sigma_{3}(I, u)<2.605 \cdot 10^{-9}$ (bound for \# vectors of bounded length in a rank 6 lattice).
$\Sigma_{2}(I, u) \leq 6\left(\# \mu_{F}\right) e^{6 \cdot 2^{1 / 3}}\left(\leq 6\left(\# \mu_{F}\right)\right.$ elements in the sum $)$.
$k^{0}(I, u) \leq 6\left(\# \mu_{F}\right) e^{-6 \cdot 2^{1 / 3} \pi}+2.605 \cdot 10^{-9}<1+\left(\# \mu_{F}\right) e^{-6 \pi}<k^{0}\left(O_{F}, 1\right)$.

Prove the conjecture: 2) $[D]$ is on the principal torus

Assume that $[D]$ has the form [$(O F, u)$], for some $u=\left(u_{1}, u_{2}, u_{3}\right) \in\left(\mathbb{R}_{+}\right)^{3}$ and
$w=\log (u)=\left(\log u_{1}, \log u_{2}, \log u_{3}\right) \in \mathcal{H} / \Lambda_{F}$.
\mathcal{F} is the fundamental domain of Λ_{F}.

1. Idea 1: Choose $w \in \mathcal{F}$.

Prove the conjecture: 2) $[D]$ is on the principal torus

Assume that $[D]$ has the form [$(O F, u)$], for some $u=\left(u_{1}, u_{2}, u_{3}\right) \in\left(\mathbb{R}_{+}\right)^{3}$ and
$w=\log (u)=\left(\log u_{1}, \log u_{2}, \log u_{3}\right) \in \mathcal{H} / \Lambda_{F}$.
\mathcal{F} is the fundamental domain of Λ_{F}.

1. Idea 1: Choose $w \in \mathcal{F}$.

We divide into 2 cases:

Prove the conjecture: 2) $[D]$ is on the principal torus

Assume that $[D]$ has the form [$(O F, u)$], for some
$u=\left(u_{1}, u_{2}, u_{3}\right) \in\left(\mathbb{R}_{+}\right)^{3}$ and
$w=\log (u)=\left(\log u_{1}, \log u_{2}, \log u_{3}\right) \in \mathcal{H} / \Lambda_{F}$.
\mathcal{F} is the fundamental domain of Λ_{F}.

1. Idea 1: Choose $w \in \mathcal{F}$.

We divide into 2 cases:
2a) When $\|w\| \geq 0.24163$: find
tight upper bounds for Σ_{i}
and so for $k^{0}\left(O_{F}, u\right)$
similar to the non principal
case.
2b) When $\|w\|<0.24163$: the above bounds do not work.

Prove the conjecture: 2 b$)[D]$ is on the principal torus and $0<\|w\|<0.24163$

Idea 2. "Amplify" the difference": To prove that $k^{0}\left(O_{F}, u\right)-k^{0}\left(O_{F}, 1\right)<0$, we prove

$$
C=\frac{k^{0}\left(O_{F}, u\right)-k^{0}\left(O_{F}, 1\right)}{\|w\|^{2}}<0
$$

Prove the conjecture: 2 b$)[D]$ is on the principal torus and $0<\|w\|<0.24163$

Idea 2. "Amplify" the difference": To prove that $k^{0}\left(O_{F}, u\right)-k^{0}\left(O_{F}, 1\right)<0$, we prove

$$
C=\frac{k^{0}\left(O_{F}, u\right)-k^{0}\left(O_{F}, 1\right)}{\|w\|^{2}}<0
$$

Write $C=\sum_{0 \neq f \in O_{F}} G(u, f)=T_{1}(u)+T_{2}(u)+T_{3}(u)$ where

$$
\begin{gathered}
T_{1}(u)=\sum_{f \in \mu_{F}} G(u, f), \quad T_{2}(u)=\sum_{f \in O_{F},\|f\|^{2} \geq 22} G(u, f) \\
T_{3}(u)=\sum_{0 \neq f \in O_{F} \backslash \mu_{F},\|f\|^{2}<22} G(u, f) .
\end{gathered}
$$

$T_{1}(u)$ is easy to bound.

Prove the conjecture: 2 b$)[D]$ is on the principal torus and $0<\|w\|<0.24163$

Idea 3. Using Maclaurin expansion of $G(u, f)$ and its the symmetry ${ }^{2}$ to bound for $T_{2}(u)=\sum_{f \in O_{F},\|f\| \geq 22} G(u, f)$.

For all $f \in O_{F}$:

$$
G(u, f) \leq 4 \pi^{2}\left\|f^{2}\right\|^{2} e^{-\pi\|f\|^{2}}\left(1+\frac{1}{2} e^{2 \pi\|w\|\left\|f^{2}\right\|}\right)
$$

In particular, if $f \in O_{F}$ with $\|f\|^{2} \geq 22$ then

$$
G(u, f) \leq 2 \pi^{2}\left(e^{-(\pi-2 / 7)\|f\|^{2}}+\frac{1}{2} e^{-(\pi-2 \pi\|w\|-2 / 7)\|f\|^{2}}\right) .
$$

${ }^{2}$ This is symmetric since F is cyclic.

Prove the conjecture: 2 b$)[D]$ is on the principal torus and $0<\|w\|<0.24163$
K : cyclic cubic subfield of F of conductor p.
Idea 4. Enumerate all possible F such that there exist short elements to bound for $T_{3}(u)=\sum_{0 \neq f \in O_{F} \backslash \mu_{F},\|f\|^{2}<22} G(u, f)$.

Prove the conjecture: 2 b$)[D]$ is on the principal torus and $0<\|w\|<0.24163$
K : cyclic cubic subfield of F of conductor p.
Idea 4. Enumerate all possible F such that there exist short elements to bound for $T_{3}(u)=\sum_{0 \neq f \in O_{F} \backslash \mu_{F},\|f\|^{2}<22} G(u, f)$.

New result: If $0 \neq f \in O_{F} \backslash \mu_{F}:\|f\|^{2}<22$, then

- $f \in O_{K} \cup O_{k}$, or
(Enumerate all such K, k and then all f.)
- $f \in O_{F} \backslash\left(O_{K} \cup O_{k} \cup \mu_{F}\right)$, and $d \leq 22$ \& $p \leq 61$.
(Enumerate all such F and then all f.)

PS: if time permits

For any $f \in O_{F}$, we define $f_{i}=\left|\tau_{i}(f)\right|, i \in\{1,2,3\}$. Then

$$
\begin{aligned}
\|u f\|^{2} & =2\left(e^{2 x}\left|\tau_{1}(f)\right|^{2}+e^{2 y}\left|\tau_{2}(f)\right|^{2}+e^{2 z}\left|\tau_{3}(f)\right|^{2}\right) \\
& =2\left(f_{1}^{2} e^{2 x}+f_{2}^{2} e^{2 y}+f_{3}^{2} e^{2 z}\right)
\end{aligned}
$$

For $f \in O_{F}$ we now define

$$
G(u, f)=e^{-\pi\|f\|^{2}} G_{2}(f, u) /\|w\|^{2},
$$

where

$$
\begin{aligned}
& G_{1}(u, f)=e^{-\pi\left[\|u f\|^{2}-\|f\|^{2}\right]}-1=e^{-2 \pi\left[\left(e^{2 x}-1\right) f_{1}^{2}+\left(e^{2 y}-1\right) f_{2}^{2}+\left(e^{2 z}-1\right) f_{3}^{2}\right]}-1 \\
& G_{2}(u, f)=G_{1}\left(u, \tau_{1}(f)\right)+G_{1}\left(u, \tau_{2}(f)\right)+G_{1}\left(u, \tau_{3}(f)\right) .
\end{aligned}
$$

PS2: if time still permits

Lemma

Let L be a lattice of rank 6 and λ be the length of its shortest vectors. Then for $M \geq \lambda^{2} \geq a^{2}>0$ and $\xi>0$, one has
$\sum_{\substack{x \in L \\\|x\|^{2} \geq M}} e^{-\xi\|x\|^{2}} \leq \xi \int_{M}^{\infty}\left(\left(\frac{2 \sqrt{t}}{a}+1\right)^{6}-\left(\frac{2 \sqrt{M}}{a}-1\right)^{6}\right) e^{-\xi t} \mathrm{~d} t$.

Corollary
If $\lambda^{2} \geq 6$, then
$\sum_{\substack{x \in L \\\|x\|^{2} \geq 6 \cdot 3^{1 / 3}}} e^{-\pi\|x\|^{2}}<2.6049 \cdot 10^{-9}, \quad \sum_{\substack{x \in L \\\|x\|^{2} \geq 22}} e^{-(\pi-2 / 7)\|x\|^{2}}<10^{-23}$,
$\sum_{x \in L,\|x\|^{2} \geq 22} e^{-(\pi-2 \sqrt{2} \cdot 0.170856 \pi-2 / 7)\|x\|^{2}}<2.19277 \cdot 10^{-9}$.

Thank you!

Thank you so much for your attention!

References

Paolo Francini.
The size function h^{0} for quadratic number fields.
J. Théor. Nombres Bordeaux, 13(1):125-135, 2001.

Gerard van der Geer and René Schoof.
Effectivity of Arakelov divisors and the theta divisor of a number field.
Selecta Math. (N.S.), 6(4):377-398, 2000.

Richard P. Groenewegen.
The size function for number fields.
Doctoraalscriptie, Universiteit van Amsterdam, 1999.
René Schoof.
Computing Arakelov class groups.
In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44
of Math. Sci. Res. Inst. Publ., pages 447-495. Cambridge Univ. Press, Cambridge, 2008.

Ha T. N. Tran.
The size function of quadratic extensions of complex quadratic fields.
Journal de théorie des nombres de Bordeaux, 29 no. 1 (2017), p. 243-259.

Ha T. N. Tran and Peng Tian.
The size function for cyclic cubic fields.
Int. J. Number Theory, 14:399-415, 2018.
Ha T. N. Tran, Peng Tian and Amy Feaver.
The size function for imaginary cyclic sextic fields
to be appeared in Journal de théorie des nombres de Bordeaux.

