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Definition
A number field is a finite extension K of Q, i.e., a Q-vector space of
finite dimension. We denote this dimension by [K : Q] and call it the
degree of K over Q.

Example
For d, a square-free integer, the number field

Q(
√

d) = {a + b
√

d : a, b ∈ Q}

is called a quadratic field.

Example
Let ζn = exp(2πi

n ) be a primitive nth root of unity. The number field

Q(ζn) = {am−1ζ
m−1
n + · · ·+ a1ζn + a0 : ai ∈ Q, ∀i}

is a cyclotomic field of degree m = [Q(ζn) : Q] = φ(n).
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Definition
Let K be a number field of degree n. An element α ∈ K is called an
algebraic integer, if it is a root of a monic polynomial f(X) ∈ Z[X].

Example
The number

√
2 ∈ Q(

√
2) is an algebraic integer, since it is a root of

X2 − 2.

Example
The number ζn = exp(2πi

n ) ∈ Q(ζn) is an algebraic integer, since it is a
root of Xn − 1.
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Definition
The set of all algebraic integers of a number field K is denoted by OK.
In fact, OK is a ring which is called the ring of integers of K.

Example
Let f(X) ∈ Z[X] be a monic polynomial. By a theorem of Gauss,

if a
b ∈ Q, f(a

b ) = 0 ⇒ b = ±1.

Hence the ring of integers of Q is Z.

Example
Let d be a square-free integer. Then

OQ(
√

d) =


Z[
√

d] = {a + b
√

d : a, b ∈ Z}, d ≡ 2, 3 (mod 4),

Z[1+
√

d
2 ] = {a + b(1+

√
d

2 ) : a, b ∈ Z}, d ≡ 1 (mod 4).
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Proposition
Let K be a number field. Then every nonzero ideal a of OK can be
written uniquely in the form

a = Pe1
1 . . .P

eg
g ,

where Pi’s are distinct prime ideals of OK and ei’s are positive integers.

Definition
Let K/F be a finite extension of number fields. A prime ideal p of F
will factor in OK, say pOK = Pe1

1 . . .P
eg
g (ei ≥ 1). The exponents ei’s

are called the ramificaton indices of p in K.
If ei > 1, for at least one i, then we say p is ramified in K;
If e1 = g = 1, then p is said to be inert in K;
If g > 1, and e1 = · · · = eg = 1, then p is said to split in K. If also
fi := [OK

Pi
: OF

p ] = 1 for all i, p is said to split completely in K.
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Example
Let K = Q(i), where i2 = −1. Then OK = Z[i] (The Gaussian integers).
We have

2OK = (1 + i)2, so 2 ramifies in Q(i);

3OK is a prime ideal in Z[i], so 3 is inert in Q(i);
5OK = (2 + i)(2 − i), so 5 splits (completely) in Q(i).

Remark
In fact, one can show that for an odd prime p:

p splits in Z[i] ⇐⇒ p ≡ 1(mod 4) ⇐⇒ p = a2 + b2, for some a, b ∈ Z
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Let K be a number field and denote its ring of integers by OK.
A fractional ideal of K, is a non-zero OK-submodule a of K for
which there exists an element 0 ̸= d ∈ OK such that

da = {dx : x ∈ a} ⊆ OK.

We denote by I(K) the set of all the fractional ideals of K.

A principal fractional ideal of K is of the form

⟨b⟩ = bOK = {bx : x ∈ O}

for some 0 ̸= b ∈ K. We denote by P(K) the set of all the principal
fractional ideals of K.
The ideal class group of K, denoted by Cl(K), is defined as

Cl(K) =
I(K)

P(K)
.
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Theorem
Let K be a number field. Then the ideal class group Cl(K) is a finite
abelian group.

Definition
The class number hK of K is the order of Cl(K).

Remark
The structure of Cl(K) indicates how far OK is from being a unique
factorization domain:

hK = 1 ⇐⇒ OK is PID ⇐⇒ OK is UFD

Example
The quadratic field K = Q(

√
−5) has class number 2. Its ring of

integers is OK = Z[
√
−5] in which we have

6 = 2.3 = (1 +
√
−5).(1 −

√
−5).
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The Classical Embedding Problem
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Lamé observation (1847)
Fermat’s Last Theorem would be proven if the pth cyclotomic
fields Q(ζp) had class number 1 for odd primes p.

However, Ernst Kummer had shown three years earlier that this is false
for most primes p, with p = 23 being the famous first example.
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Gauss’ class number one problems for quadratic fields (1801)
1 An imaginary quadratic field Q(

√
d) has class number one, if and

only if d = −1,−2,−3,−7,−11,−19,−43,−67,−163.

This problem was solved by Heegner (1954), Baker (1966), and
Stark (1967).

2 There are infinitely many real quadratic number fields with class
number one

This is still an open problem! quadratic Pólya fields
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This problem was solved by Heegner (1954), Baker (1966), and
Stark (1967).

2 There are infinitely many real quadratic number fields with class
number one

This is still an open problem! quadratic Pólya fields
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The classical embedding problem
For K, a number field, does exist a finite extension L/K with hL = 1?

Kummer didn’t have the tools to answer this embedding question; but
his work has led to the foundation of class field theory (the study of
abelian extensions of arbitrary number fields).

Abbas Maarefparvar (U of L) On Embedding problems February 14, 2024 14 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The classical embedding problem
For K, a number field, does exist a finite extension L/K with hL = 1?

Kummer didn’t have the tools to answer this embedding question; but
his work has led to the foundation of class field theory (the study of
abelian extensions of arbitrary number fields).

Abbas Maarefparvar (U of L) On Embedding problems February 14, 2024 14 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kronecker-Weber Theorem
Let K/Q be a finite abelian extension. Then K ⊆ Q(ζn) for some
positive integer n.
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Conjecture (Hilbert, 1902)
For any number field K, there exists a unique finite extension H(K) of
K such that principal prime ideals p of K split completely in H(K):

pOH(K) = P1 . . .Pg,

where Pi’s are distinct prime ideals of H(K) and g = [H(K) : K].
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Theorem (Furtwängler, 1925)
Let K be an arbitrary number field. Then there exists a unique finite
extension H(K) of K such that the extension H(K)/K is

unramified (for every prime ideal p of K, the ideal pOH(K) either
remains prime or splits completely in H(K));
abelian (a finite Galois extension whose Galois group is abelian);
maximal respect to the above properties.
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Definition
The Hilbert class field of a number field K, denoted by H(K), is the
maximal abelian unramified extension of K.

Principal Ideal Theorem (Furtwängler, 1930)
Every fractional ideal a of K becomes principal in H(K).

Artin’s reciprocity law gives a canonical isomorphism Gal(H(K)/K) ≃ Cl(K).
In particular, [H(K) : K] = hK.
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Example
Let K = Q(

√
−5). Then H(K) = Q(

√
−1,

√
−5). Also,

Gal(H(K)/K) ≃ Cl(K) =< (2, 1 +
√
−5) >≃ Z/2Z;

(2, 1 +
√
−5)OH(K) = (1 +

√
−1).

Remark
The number field K has class number 1 if and only if H(K) = K. In
particular, if hK = 1 then there exists no (non-trivial) abelian
unramified extension of K.
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Class Field Tower Problem (Furtwängler, 1925)
Let K = K1 be a number field. For every n ≥ 1, let Kn+1 be the Hilbert
class field of Kn. Decide whether the tower

K = K1 ⊆ K2 ⊆ K3 ⊆ . . . (Class Field Tower)

can be infinite, or must always terminate with a field of class number 1
after a finite number of steps.

Remark
The Class Field Tower Problem is equivalent to the classical
embedding problem.

Example
The class field tower for Q(

√
−5) is Q(

√
−5) ⊆ Q(

√
−1,

√
−5).
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For nearly 40 years, no counterexamples emerged, leading many to
suppose that class field towers always terminated!

A counterexample for Class Field Tower Problem (Golod and Shafarevich, 1964)

The class field tower for Q(
√
−2 × 3 × 5 × 7 × 11 × 13) is infinite.

Equivalently, the quadratic field Q(
√
−2 × 3 × 5 × 7 × 11 × 13) is not

contained in any number filed with class number one.
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The New Embedding Problem
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On Pólya fields and Pólya groups

Theorem (Pólya, 1919)
A polynomial f(X) ∈ Q[X] maps Z to Z if and only of it can be written
as a finite Z-linear combination of the polynomials(

X
n

)
=

X(X − 1)(X − 2) · · · (X − n + 1)
n! : n = 0, 1, 2, · · · .

Abbas Maarefparvar (U of L) On Embedding problems February 14, 2024 23 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Definition (Zantema, 1982)
A number field K, with ring of integers OK, is called a Pólya field, if
the OK-module

Int(OK) = {f ∈ K[X] : f(OK) ⊆ OK}

has a regular basis. That is, an OK-basis {fn}n≥0 with deg(fn) = n.
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Theorem (Ostrowski, 1919)
A number field K is a Pólya field if and only if for every q, a prime
power, the ideal

Πq(K) :=
∏
p∈PK

NK/Q(p)=q

p (Ostrowski ideal)

is principal (If q is not the norm of any prime ideal of OK, set Πq(K) = OK).
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Definition(Cahen-Chabert, 1997)
The Pólya group of a number field K, denoted by Po(K), is the
subgroup of Cl(K) defined as follows

Po(K) = ⟨[Πq(K)] : q is a prime power⟩.

relative Pólya group

Remark
The number field K is Pólya if and only if Po(K) = 0. In particular, if
hK = 1 then K is a Pólya field.

Abbas Maarefparvar (U of L) On Embedding problems February 14, 2024 26 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Definition(Cahen-Chabert, 1997)
The Pólya group of a number field K, denoted by Po(K), is the
subgroup of Cl(K) defined as follows

Po(K) = ⟨[Πq(K)] : q is a prime power⟩.

relative Pólya group

Remark
The number field K is Pólya if and only if Po(K) = 0. In particular, if
hK = 1 then K is a Pólya field.

Abbas Maarefparvar (U of L) On Embedding problems February 14, 2024 26 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem (Zantema, 1982)
A quadratic number field K = Q(

√
d) is a Pólya field if and only if one

of the following conditions holds:
d = −1,−2,−p, where p ≡ 3 (mod 4) is a prime number;
d = p, where p is a prime number;
d = 2p, pq, where p ≡ q (mod 4) are primes, and x2 − y2d = −1 has
no solution in OK.

Gauss’ conjecture
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Theorem (Zantema, 1982)
Every cyclotomic field Q(ζn) is a Pólya field.

The Kronecker-Weber Theorem
Every finite abelian extension of Q is contained in a cyclotomic field.

Corollary
The quadratic field Q(

√
−2 × 3 × 5 × 7 × 11 × 13) is contained in a

Pólya field.

Abbas Maarefparvar (U of L) On Embedding problems February 14, 2024 28 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem (Zantema, 1982)
Every cyclotomic field Q(ζn) is a Pólya field.

The Kronecker-Weber Theorem
Every finite abelian extension of Q is contained in a cyclotomic field.

Corollary
The quadratic field Q(

√
−2 × 3 × 5 × 7 × 11 × 13) is contained in a

Pólya field.

Abbas Maarefparvar (U of L) On Embedding problems February 14, 2024 28 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem (Zantema, 1982)
Every cyclotomic field Q(ζn) is a Pólya field.

The Kronecker-Weber Theorem
Every finite abelian extension of Q is contained in a cyclotomic field.

Corollary
The quadratic field Q(

√
−2 × 3 × 5 × 7 × 11 × 13) is contained in a

Pólya field.

Abbas Maarefparvar (U of L) On Embedding problems February 14, 2024 28 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The New Embedding Problem (Leriche, 2014)
Is a number field K contained in a Pólya field?

Theorem (Leriche, 2014)
Let K be a number field. Then the Hilbert class field of K, i.e., H(K),
is Pólya field. In particular, K is contained in a Pólya field, namely its
Hilbert class field.
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The Relativized Version
of New Embedding Problem
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Relative Pólya group

Definition (M.-Rajaei, 2020 & Chabert 2019)
Let L/K be a finite extension of number fields. The relative Pólya
group of L/K, denoted by Po(L/K), is defined as

Po(L/K) =

〈
relative Ostrowski ideals︷ ︸︸ ︷

Πpf(L/K) =
∏

P∈PL
NL/K(P)=pf

P

 : p ∈ PK , f ∈ N

〉
.

In particular, Po(L/Q) = Po(L) and Po(L/L) = Cl(L). Pólya group

Theorem (M.-Rajaei, 2020)
Let F ⊆ K ⊆ L be a tower of finite extensions of number fields. If L/K
is Galois, then Po(L/F) ⊆ Po(L/K). In particular,

Po(L) = Po(L/Q) ⊆ Po(L/K).
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The relativized version of new embedding problem
Is every number field K contained in a number field L with
Po(L/K) = 0?

Theorem (M.-Rajaei, 2020)
Let L/K be a finite Galois extension of number fields. Then there
exists a surjective map

ψ :
⊕
p∈PK

Z
ep(L/K)Z

→ Po(L/K)

ϵL/K(Cl(K))
,

where ep(L/K) denotes the ramification index of p in L/K, and
ϵL/K : [a] ∈ Cl(K) → [aOL] ∈ Cl(L) denotes the capitulation map.
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Theorem (M.-Rajaei, 2020)
Let L/K a finite Galois extension of number fields. If L/K is
unramified at all prime ideals of K, then Po(L/K) = ϵL/K(Cl(K)).

Corollary (M.-Rajaei, 2020)
Let K be a number field, and denote its Hilbert class field by H(K).
Then Po(H(K)/K) = 0. In particular, K is contained in a number field
with trivial relative Pólya group (over K).

Proof. Since H(K)/K is unramified, Po(H(K)/K) = ϵH(K)/K(Cl(K)). By
the Principal Ideal Theorem, ϵH(K)/K(Cl(K)) = 0.
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Since
Po(H(K)) = Po(H(K)/Q) ⊆ Po(H(K)/K) = 0,

we obtain Leriche’s result on Pólya-ness of Hilbert Class Fields.

Let
K = K1 ⊆ K2 = H(K1) ⊆ K3 = H(K2) ⊆ . . . ,

be the class field tower of K. Then

Po(Ki/K) = 0, ∀i = 2, 3 . . . .

For instance, for K = Q(
√
−2 × 3 × 5 × 7 × 11 × 13), there are

infinitely many number fields, containing K, whose relative Pólya
groups over K are trivial.
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Since
Po(H(K)) = Po(H(K)/Q) ⊆ Po(H(K)/K) = 0,

we obtain Leriche’s result on Pólya-ness of Hilbert Class Fields.
Let

K = K1 ⊆ K2 = H(K1) ⊆ K3 = H(K2) ⊆ . . . ,

be the class field tower of K. Then

Po(Ki/K) = 0, ∀i = 2, 3 . . . .

For instance, for K = Q(
√
−2 × 3 × 5 × 7 × 11 × 13), there are

infinitely many number fields, containing K, whose relative Pólya
groups over K are trivial.
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