On extremal orthogonal arrays

Sho Suda (National Defense Academy of Japan) joint work with Alexander Gavrilyuk (Shimane University, Japan)

March 13, 2024 Number Theory and Combinatorics Seminar University of Lethbridge

- Orthogonal arrays were introduced by Rao in 1946 and appeared in statistics. Later, applications were found, for examples:
 - authentication codes;
 - (t, w)-threshold schemes.

- Orthogonal arrays were introduced by Rao in 1946 and appeared in statistics. Later, applications were found, for examples:
 - authentication codes;
 - (t, w)-threshold schemes.

Definition (Orthogonal arrays)

An orthogonal array OA(N, n, q, t) is an $N \times n$ matrix M with entries the numbers $0, 1, \ldots, q-1$ such that in any $N \times t$ submatrix of M all possible row vectors of length t occur $\lambda := \frac{N}{q^t}$ times.

- Orthogonal arrays were introduced by Rao in 1946 and appeared in statistics. Later, applications were found, for examples:
 - authentication codes;
 - (t, w)-threshold schemes.

Definition (Orthogonal arrays)

An orthogonal array OA(N, n, q, t) is an $N \times n$ matrix M with entries the numbers $0, 1, \ldots, q-1$ such that in any $N \times t$ submatrix of M all possible row vectors of length t occur $\lambda := \frac{N}{q^t}$ times.

Example: OA(N = 8, n = 4, q = 2, t = 3), 8×4 matrix with 2 symbols

$$M = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

- Orthogonal arrays were introduced by Rao in 1946 and appeared in statistics. Later, applications were found, for examples:
 - authentication codes;
 - (t, w)-threshold schemes.

Definition (Orthogonal arrays)

 $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$

An orthogonal array OA(N, n, q, t) is an $N \times n$ matrix M with entries the numbers $0, 1, \ldots, q-1$ such that in any $N \times t$ submatrix of M all possible row vectors of length t occur $\lambda := \frac{N}{q^t}$ times.

Example:
$$\mathrm{OA}(N=8,n=4,q=2,t=3)$$
, $8 imes 4$ matrix with 2 symbols

$$M = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Any 8×3 submatrix have rows $000, 001, \dots, 111$ exactly $\lambda = \frac{8}{2^3} = 1$ time.

- 1. Construction: Using finite fields, (linear) codes, Hadamard matrices, etc.
- 2. Restriction of parameters: Rao's bound, etc.
- 3. Structure: Association schemes, automorphism groups, etc.
- 4. Applications

In this talk, I will review constructions and Rao's bound, and deal with orthogonal arrays which attain Rao's bound and are close to it in a sense.

Theorem (Bush, 1952)

For a prime power q and a positive integer $t \ge 1$, $OA(q^t, q + 1, q, t)$ exists.

Proof: Let f_1, \ldots, f_N be the polynomials of degree at most t-1 in $\mathbb{F}_q[x]$, where $N = q^t$. Define an $N \times q$ matrix M with rows indexed by $\{1, \ldots, N\}$ and columns indexed by the elements of \mathbb{F}_q as

$$M_{i,\alpha} = f_i(\alpha).$$

Append the column to the matrix M to make $N \times (q+1)$ matrix M' so that

$$(M')_{i,q+1}$$
 = the coefficient of x^{t-1} in f_i .

Then M' is an OA(N, q + 1, q, t).

Theorem (Bush, 1952)

For a prime power q and a positive integer $t \ge 1$, $OA(q^t, q + 1, q, t)$ exists.

Example for q = 2 and t = 2.

- $(f_1, \ldots, f_4) = (0, 1, x, x + 1)$: the polynomials of degree at most 1 in $\mathbb{F}_2[x]$
- ▶ Define a 4 × 2 matrix M by M_{i,α} = f_i(α) and append the column to M to make M':

$$M' = \begin{cases} f_1 = 0 \\ f_2 = 1 \\ f_3 = x \\ f_4 = x + 1 \end{cases} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

where * is the column of the coefficient of x in f_i .

▶ Then M' is an OA(4, 3, 2, 2).

Construction: finite fields

For $q = 2^m$ and t = 3, one more column can be added.

Theorem (Bush, 1952)

For $q = 2^m$, $OA(q^3, q + 2, q, 3)$ exists.

Construction: Append to the constructed matrix M' one column defined by *i*-th entry equal to the coefficient of x in the polynomial $f_i(x)$. Example for q = 2.

- $(f_1, \ldots, f_8) =$ (0, 1, x, x + 1, x², 1 + x², x + x², 1 + x + x²): the polynomials of degree at most 2 in $\mathbb{F}_2[x]$
- ▶ Define a 8 × 4 matrix M'' = (M', **) where M' is the same as before and ** is the column of the coefficient of x in f_i.
- Then M'' is an OA(8, 4, 2, 3).

	0	1	*	**
f_1	0	0	0	0)
f_2	1	1	0	0
f_3	0	1	0	1
f_4	1	0	0	1
f_5	0	1	1	0
f_6	1	0	1	0
f_7	0	0	1	1
f_8	1	1	1	1 /

Construction: Hadamard matrices

- ▶ A Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\{1, -1\}$ such that $HH^{\top} = nI$.
- Examples: stands for -1

$$H = \begin{pmatrix} 1 & 1 \\ 1 & - \end{pmatrix}, \quad H = \begin{pmatrix} - & - & - & - \\ 1 & 1 & - & - \\ - & 1 & - & 1 \\ 1 & - & - & 1 \end{pmatrix}$$

- The order of a Hadamard matrix is 1, 2 or a multiple of four. The other implication is known as the Hadamard conjecture.
- The smallest order for which no Hadamard matrix is known is 668. Until 2005, it was 428. Kharaghani and Tayfeh-Razaie constructed a Hadamard matrix of order 428.
- Many constructions: the Kronecker product, Paley digraphs, the plug-in method in orthogonal designs, etc.

Construction: Hadamard matrices

A Hadamard matrix of order n is an n × n matrix H with entries in {1, −1} such that HH^T = nI.

Theorem

1. Let H be a Hadamard matrix of order n. Then the matrix

$$M = \begin{pmatrix} H \\ -H \end{pmatrix}$$

is an OA(2n, n, 2, 3).

2. Conversely, any $\mathsf{OA}(2n,n,2,3)$ is obtained in this way by a Hadamard matrix of order n.

Construction: linear codes

- Let q be a prime power, and \mathbb{F}_q be the finite field of order q.
- ▶ A linear code of length n over \mathbb{F}_q is a subspace of the vector space \mathbb{F}_q^n over \mathbb{F}_q .
- \blacktriangleright For $x=(x_i)_{i=1}^n, y=(y_i)_{i=1}^n\in \mathbb{F}_q^n,$ define the Hamming distance between x and y by

$$d(x,y) = |\{i \in \{1, \dots, n\} \mid x_i \neq y_i\}|.$$

- For a linear code C, the minimum distance d is min{d(x,y) | x, y ∈ C, x ≠ y}.
- The dual code C^{\perp} of C is $\{y \in \mathbb{F}_q^n \mid \langle x, y \rangle = 0 \text{ for any } x \in C\}$, where $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$.

Theorem

Let C be a linear code of length n over \mathbb{F}_q such that the dual code C^{\perp} has minimum distance d^{\perp} . Then the matrix whose rows consist of the vectors of C is an $OA(|C|, n, q, d^{\perp} - 1)$.

Tight orthogonal arrays

The lower bound for N on OA(N, n, q, t) was given by Rao as follows:

$$N \ge \begin{cases} \sum_{k=0}^{e} \binom{n}{k} (q-1)^{k} & \text{if } t = 2e, \\ \sum_{k=0}^{e} \binom{n}{k} (q-1)^{k} + \binom{n-1}{e} (q-1)^{e+1} & \text{if } t = 2e+1. \end{cases}$$
(1)

An OA is said to be *tight* if it achieves (1).

Tight orthogonal arrays

The lower bound for N on OA(N, n, q, t) was given by Rao as follows:

$$N \ge \begin{cases} \sum_{k=0}^{e} \binom{n}{k} (q-1)^k \text{ if } t = 2e, \\ \sum_{k=0}^{e} \binom{n}{k} (q-1)^k + \binom{n-1}{e} (q-1)^{e+1} \text{ if } t = 2e+1. \end{cases}$$
(1)

An OA is said to be *tight* if it achieves (1).

▶ Define the *degree set* of an orthogonal array *M* by

 $S(M):=\{d(x,y)\mid x,y \text{ are distinct rows of } M\}.$

- s := |S(M)| is said to be *degree*.
- Define $K_{n,q,j}(x) = \sum_{k=0}^{j} (-1)^k (q-1)^{j-k} {x \choose j} {n-x \choose j-k}$, known as Krautchouk polynomials.

Tight orthogonal arrays

The lower bound for N on OA(N, n, q, t) was given by Rao as follows:

$$N \ge \begin{cases} \sum_{k=0}^{e} \binom{n}{k} (q-1)^{k} & \text{if } t = 2e, \\ \sum_{k=0}^{e} \binom{n}{k} (q-1)^{k} + \binom{n-1}{e} (q-1)^{e+1} & \text{if } t = 2e+1. \end{cases}$$
(1)

An OA is said to be *tight* if it achieves (1).

Define the *degree set* of an orthogonal array M by

 $S(M) := \{ d(x,y) \mid x,y \text{ are distinct rows of } M \}.$

- s := |S(M)| is said to be *degree*.
- Define $K_{n,q,j}(x) = \sum_{k=0}^{j} (-1)^k (q-1)^{j-k} {x \choose j} {n-x \choose j-k}$, known as Krautchouk polynomials.

Theorem (Delsarte 1973, Noda 1986)

Let M be a tight OA(N, n, q, t). Then s = [(t + 1)/2], and $n \in S(M)$ if t odd, and $|M| \prod_{\alpha \in S(M) \setminus \{n\}} (1 - x/\alpha) = \sum_{j=0}^{[t/2]} K_{n-\varepsilon,q,j}(x),$ where ε is 0 if t even and 1 if t odd.

Tight orthogonal arrays with even strength

Theorem (Delsarte 1973, Noda 1986)

Let M be a tight $\mathsf{OA}(N,n,q,t).$ Then s=[(t+1)/2], and $n\in S(M)$ if t odd, and $$${}_{[t/2]}$$

$$|M| \prod_{\alpha \in S(M) \setminus \{n\}} (1 - x/\alpha) = \sum_{j=0}^{N-1} K_{n-\varepsilon,q,j}(x),$$

where ε is 0 if t even and 1 if t odd.

In particular, if there exists a tight OA(N, n, q, 2e), $\sum_{j=0}^{e} K_{n,q,j}(x)$ has exactly e distinct integral zeros in the interval [1, n].

Theorem (Delsarte 1973, Noda 1986)

Let M be a tight OA(N, n, q, t). Then s = [(t+1)/2], and $n \in S(M)$ if t odd, and [t/2]

$$|M| \prod_{\alpha \in S(M) \setminus \{n\}} (1 - x/\alpha) = \sum_{j=0}^{m-1} K_{n-\varepsilon,q,j}(x),$$

where ε is 0 if t even and 1 if t odd.

In particular, if there exists a tight OA(N, n, q, 2e), $\sum_{j=0}^{e} K_{n,q,j}(x)$ has exactly e distinct integral zeros in the interval [1, n]. This yields non-existence results for

•
$$e = 2, q \neq 6$$
 by Noda (1979)

- $e \ge 3, q \ge 3$ by Hong (1986)
- ▶ e = 3, q = 2 and $e = 4, 5, 6, q = 2, n \le 10^9$ by Mukerjee and Kageyama (1994)

The case e = 2, q = 6 was ruled out by Gavrilyuk-S.-Vidali (2019) using association schemes. Note that there are many tight OA(N, n, q, 2).

Tight orthogonal arrays with even strength

The remaining cases for classification of tight $\mathsf{OA}(N,n,q,2e)$ are:

▶ q arbitrary, e = 1 with $n \ge 2$ (It seems that the classification is hopeless, because there are many examples and essentially this includes the classification of Hadamard matrices.)

•
$$q = 2$$
 and $e \ge 4$ with $n \ge 2e + 1$

Open Problem

Can we show the non-existence for tight OA(N, n, 2, 2e) for $e \ge 4$ with $n \ge 2e$? (Existence of a non-integer root of the polynomial

$$\sum_{j=0}^{e} K_{n,2,j}(x) = \sum_{j=0}^{e} \sum_{k=0}^{j} (-1)^k \binom{x}{j} \binom{n-x}{j-k}$$

implies an affirmative answer above.)

For e = 4, the following are the roots of $\sum_{j=0}^{4} K_{n,2,j}(x) = 0$:

$$x = \frac{1}{2} \left(n + 1 \pm \sqrt{3n - 7 \pm \sqrt{6n^2 - 30n + 40}} \right).$$

Tight orthogonal arrays with odd strength

Theorem

Let C be a tight OA(N, n, q, 2e + 1). Then $C_i = \{(x_2, \dots, x_n) \mid (i, x_2, \dots, x_n) \in C\}$ is a tight OA(N, n - 1, q, 2e).

• There are no tight OA(N, n, q, 2e + 1) with $2e + 1 \ge 5$ and $q \ge 3$.

Theorem (Noda, 1986)

Let C be a tight OA(N, n, q, 3). Then one of the following holds:

1.
$$(N, n, q) = (2n, n, 2)$$
 with $n \equiv 0 \pmod{4}$,

2.
$$(N, n, q) = (q^3, q + 2, q)$$
 with q even.

- ▶ The first case is equivalent to a Hadamard matrix of order *n*.
- ► The second case exists if q is a power of 2. C_i, 1 ≤ i ≤ q, a complete set of MOLS of order q. The value q is conjectured to be a power of 2.

${\rm Tight}~{\rm OA}(q^3,q+2,q,3)$

Theorem (Noda, 1986)

Let C be a tight OA(N, n, q, 3). Then one of the following holds:

1.
$$(N, n, q) = (2n, n, 2)$$
 with $n \equiv 0 \pmod{4}$,

2. $(N, n, q) = (q^3, q + 2, q)$ with q even.

Theorem (Gavrilyuk-S., 2022)

If there exists a tight $OA(q^3, q+2, q, 3)$ with q > 2, then q is a multiple of four.

- It is known by Delsarte (1974) that a tight OA(q³, q + 2, q, 3) yields a symmetric association scheme of 2 classes (= a strongly regular graph).
 Sketch of proof:
 - 1. The 2-class association schemes has a 3-class fission scheme.
 - 2. Calculating triple intersection numbers of the 3-class scheme yields the condition $q \equiv 0 \pmod{4}$ if q > 2.

For the details of the proof and association schemes, please search my recorded talk at "Stinson66 - New Advances in Designs, Codes and Cryptography".

Theorem (Delsarte, 1973)

Let M be an OA(N, n, q, t) with degree s. Then $t \le 2s$ holds, with equality if and only if M is a tight OA with t = 2s.

We call OA(N, n, q, t) extremal if $t \ge 2s - 1$ holds. In the block design, the same concept was introduced and studied by lonin and Shrikhande.

- \blacktriangleright V is a finite set with v elements, called points.
- \mathcal{B} is a family of *k*-element subsets of *V*, called blocks.
- (V, B) is a t-(v, k, λ) design if any t-element subset of V is contained exactly λ blocks.
- ► The degree of the design (V, B) is the number of intersection of the distinct blocks:

 $s = |\{|B \cap B'| \mid B, B' \in \mathcal{B}, B \neq B'\}|$

Extremal *t*-designs

In the block design, the same concept was introduced and studied by lonin and Shrikhande.

- \blacktriangleright V is a finite set with v elements, called points.
- \mathcal{B} is a family of *k*-element subsets of *V*, called blocks.
- (V, B) is a t-(v, k, λ) design if any t-element subset of V is contained exactly λ blocks.
- ► The degree or intersection numbers of the design (V, B) is the number of intersection of the distinct blocks:

$$s=|\{|B\cap B'|\mid B,B'\in\mathcal{B},B\neq B'\}|$$

Theorem

- 1. For a 2e- (v, k, λ) design (V, \mathcal{B}) , $|\mathcal{B}| \ge {v \choose e}$.
- 2. For a *t*-design (V, \mathcal{B}) with *s* intersection numbers, $t \leq 2s$ holds, with equality if and only if t = 2s and the design attains the bound in 1 (called a tight design).

lonin and Shrikhande called *t*-designs with s intersection numbers extremal if $t \ge 2s - 1$.

Extremal *t*-designs

- \blacktriangleright V is a finite set with v-elements, called points.
- \blacktriangleright ${\cal B}$ is a family of k-element subsets of V, called blocks.
- (V, B) is a t-(v, k, λ)design if any t-element subset of V is contained exactly λ blocks.
- ► The degree *s* or intersection numbers of the design (*V*, *B*) is the number of intersection of the distinct blocks:

$$s=|\{|B\cap B'|\mid B,B'\in\mathcal{B},B\neq B'\}|$$

lonin and Shrikhande called t-designs with s intersection numbers extremal if $t \geq 2s-1.$

Theorem (Ionin-Shrikhande, 1993)

Let (V, \mathcal{B}) be a (2s-1)- (v, k, λ) design with s intersection numbers $x_1, \ldots, x_s.$ Then

$$\frac{(s-1)(k-s)(k-s+1)}{v-2s+2} \le \sum_{i=1}^{s} x_i - \frac{s(s-1)}{2} \le \frac{s(k-s)(k-s+1)}{v-2s+2},$$

with equality in the lower bound iff one of the intersection numbers is zero, and with equality in the upper bound iff t = 2s (that is, (V, \mathcal{B}) is a tight design).

Theorem (Gavrilyuk-S., 2024)

Let M be an extremal OA(N, n, q, 2s - 1) with s distinct Hamming distances with

 $\{n - d(x, y) \mid x, y \text{ are dinstinct rows of } M\} = \{x_1, \dots, x_s\}, x_1 < \dots < x_s.$

Then

$$\frac{(s-1)(n-s)}{q} \le \sum_{i=1}^{s} x_i - \frac{s(s-1)}{2} \le \frac{s(n-s)}{q},$$

with equality in the left if and only if $x_1 = 0$, and with equality in the right if and only if M is tight

Note that for a tight OA(N, n, q, 2s), $n - x_1, \ldots, n - x_s$ are uniquely determined as the zeros of the polynomial $\sum_{j=0}^{s} K_{n,q,j}(x)$.

► For distinct non-negative integers $x_1, x_2, ..., define F_j^{(k)}$ $(k \ge 1, 0 \le j \le k\}$) as follows: $F_0^{(k)} = 1, F_k^{(k)} = x_1 \cdots x_k$ and $F_j^{(k)} = F_i^{(k-1)} + (x_k - k + j)F_{i-1}^{(k-1)}$ $(k \ge 2, 1 \le j \le k).$

Lemma (Gavrilyuk-S., 2024)

Let M be an extremal OA(N, n, q, 2s - 1) with s distinct Hamming distances with

 $\{n - d(x, y) \mid x, y \text{ are distinct rows of } M\} = \{x_1, \dots, x_s\}, x_1 < \dots < x_s.$

Then, for $0 \leq \ell \leq s$,

$$\sum_{j=0}^{s} (-1)^{j} (n-\ell)_{s-j} \lambda_{s-j} F_{j}^{(s)} = \delta_{\ell,0} \prod_{i=1}^{s} (n-x_{i})$$

where $\lambda_j = \frac{N}{q^j}$ and $(a)_m = a(a-1)\cdots(a-m+1)$, $(a)_0 = 1$.

Sketch of proof:

Regarding a vector (x_1, \ldots, x_n) of length n with entries $\{1, \ldots, q\}$ as a set $\{(1, x_1), \ldots, (n, x_n)\}$. Fixing a row y of the OA, double counting the set

$$\{(x,I) \mid x \text{ is a row of the OA }, |I| = i, I \subset x \cap y\}$$

with some calculation yields the result.

► For distinct non-negative integers $x_1, x_2, ..., \text{ define } F_j^{(k)}$ $(k \ge 1, 0 \le j \le k\})$ as follows: $F_0^{(k)} = 1, F_k^{(k)} = x_1 \cdots x_k$ and $F_j^{(k)} = F_j^{(k-1)} + (x_k - k + j)F_{j-1}^{(k-1)}$ $(k \ge 2, 1 \le j \le k).$

Lemma (Gavrilyuk-S., 2024)

Let M be an extremal OA(N, n, q, 2s - 1) with s distinct Hamming distances with

 $\{n - d(x, y) \mid x, y \text{ are distinct rows of } M\} = \{x_1, \dots, x_s\}, x_1 < \dots < x_s.$

Then, for $0 \leq \ell \leq s$,

$$\sum_{j=0}^{s} (-1)^{j} (n-\ell)_{s-j} \lambda_{s-j} F_{j}^{(s)} = \delta_{\ell,0} \prod_{i=1}^{s} (n-x_{i})^{j} \lambda_{s-j} F_{j}^{(s)} + \delta_{\ell,0} \prod_{i=1}^{s} (n-x_{i})^{j} \lambda_{s-j} F_{j}^{(s)} + \delta_{\ell,0} \prod_{i=1}^{s} (n-x_{i})^{j} \lambda_{s-j} \prod_{i=1}^{s} (n-x_{i})^{j} \lambda_{s-$$

where $\lambda_j = \frac{N}{q^j}$ and $(a)_m = a(a-1)\cdots(a-m+1)$, $(a)_0 = 1$.

Solving a system of linear equations whose unknowns are $F_j^{(s)}, 1 \le j \le s$ yields:

$$F_{j}^{(s)} = \frac{(n-s+j-1)_{j-1}}{q^{j-1}} \left(\binom{s-1}{j-1} F_{1}^{(s)} - \frac{((s-1)\binom{s-1}{j-1} - \binom{s-1}{j})(n-s)}{q} \right)$$

Lower bound: $\frac{(s-1)(n-s)}{q} + \frac{s(s-1)}{2} \leq \sum_{i=1}^{s} x_i$

For distinct non-negative integers x_1, x_2, \ldots , define $F_j^{(k)}$ $(k \ge 1, 0 \le j \le k\})$ as follows: $F_0^{(k)} = 1, F_k^{(k)} = x_1 \cdots x_k$ and

$$F_j^{(k)} = F_j^{(k-1)} + (x_k - k + j)F_{j-1}^{(k-1)} \quad (k \ge 2, 1 \le j \le k).$$

Then:

$$F_s^{(s)} = \frac{(n-1)_{s-1}}{q^{s-1}} \left(F_1^{(s)} - \frac{(s-1)(n-s)}{q} \right).$$

• Since $F_s^{(s)} = x_1 \cdots x_s \ge 0$ and $F_1^{(s)} = \sum_{i=1}^s x_i - \frac{s(s-1)}{2}$, we have

$$\frac{(s-1)(n-s)}{q} + \frac{s(s-1)}{2} \le \sum_{i=1}^{s} x_i,$$

which proves the lower bound on $\sum_{i=1}^{s} x_i$.

Upper bound: $\sum_{i=1}^{s} x_i \leq \frac{s(n-s)}{q} + \frac{s(s-1)}{2}$

Lemma

- 1. (Ionin-Shrikhande, 1993) $\sum_{j=0}^{s} (-1)^j F_j^{(s)} \cdot (z)_{s-j} = \prod_{i=1}^{s} (z-x_i)$, where z is an indeterminate.
- 2. (Gavrilyuk-S., 2024) $N \sum_{j=0}^{s} (-1)^{j} F_{j}^{(s)} \frac{(n)_{s-j}}{q^{s-j}} = \prod_{i=1}^{s} (n-x_{i}).$

Eliminating $\prod_{i=1}^{s}(n-x_i)$ by setting z=n, and using the upper bound on s-distinct Hamming distance code:

$$N \le \sum_{k=0}^{s} \binom{n}{k} (q-1)^k =: M,$$

we obtain:

$$\sum_{j=0}^{s} (-1)^{j} F_{j}^{(s)}(n)_{s-j} \le M \sum_{j=0}^{s} (-1)^{j} F_{j}^{(s)} \frac{(n)_{s-j}}{q^{s-j}}.$$

Substituting

$$F_j^{(s)} = \frac{(n-s+j-1)_{j-1}}{q^{j-1}} \left(\binom{s-1}{j-1} F_1^{(s)} - \frac{((s-1)\binom{s-1}{j-1} - \binom{s-1}{j})(n-s)}{q} \right)$$

into the above inequality and simplifying this, we have

$$\sum_{i=1}^{s} x_i \le \frac{s(n-s)}{q} + \frac{s(s-1)}{2}$$

Summary

- Orthogonal arrays;
- Construction by finite fields, linear codes, Hadamard matrices;
- Rao's lower bound and tight orthogonal arrays;
- Extremal orthogonal arrays.

Thank you for your attention!