On extremal orthogonal arrays

Sho Suda (National Defense Academy of Japan) joint work with
 Alexander Gavrilyuk (Shimane University, Japan)

March 13, 2024
Number Theory and Combinatorics Seminar University of Lethbridge

Introduction

- Orthogonal arrays were introduced by Rao in 1946 and appeared in statistics. Later, applications were found, for examples:
- authentication codes;
- (t, w)-threshold schemes.

Introduction

- Orthogonal arrays were introduced by Rao in 1946 and appeared in statistics. Later, applications were found, for examples:
- authentication codes;
- (t, w)-threshold schemes.

Definition (Orthogonal arrays)

An orthogonal array $\mathrm{OA}(N, n, q, t)$ is an $N \times n$ matrix M with entries the numbers $0,1, \ldots, q-1$ such that in any $N \times t$ submatrix of M all possible row vectors of length t occur $\lambda:=\frac{N}{q^{t}}$ times.

Introduction

- Orthogonal arrays were introduced by Rao in 1946 and appeared in statistics. Later, applications were found, for examples:
- authentication codes;
- (t, w)-threshold schemes.

Definition (Orthogonal arrays)

An orthogonal array $\mathrm{OA}(N, n, q, t)$ is an $N \times n$ matrix M with entries the numbers $0,1, \ldots, q-1$ such that in any $N \times t$ submatrix of M all possible row vectors of length t occur $\lambda:=\frac{N}{q^{t}}$ times.

Example: $\mathrm{OA}(N=8, n=4, q=2, t=3), 8 \times 4$ matrix with 2 symbols

$$
M=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Introduction

- Orthogonal arrays were introduced by Rao in 1946 and appeared in statistics. Later, applications were found, for examples:
- authentication codes;
- (t, w)-threshold schemes.

Definition (Orthogonal arrays)

An orthogonal array $\mathrm{OA}(N, n, q, t)$ is an $N \times n$ matrix M with entries the numbers $0,1, \ldots, q-1$ such that in any $N \times t$ submatrix of M all possible row vectors of length t occur $\lambda:=\frac{N}{q^{t}}$ times.

Example: $\mathrm{OA}(N=8, n=4, q=2, t=3), 8 \times 4$ matrix with 2 symbols

$$
M=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Any 8×3 submatrix have rows $000,001, \ldots, 111$ exactly $\lambda=\frac{8}{2^{3}}=1$ time.

Research on orthogonal arrays

1. Construction: Using finite fields, (linear) codes, Hadamard matrices, etc.
2. Restriction of parameters: Rao's bound, etc.
3. Structure: Association schemes, automorphism groups, etc.
4. Applications

In this talk, I will review constructions and Rao's bound, and deal with orthogonal arrays which attain Rao's bound and are close to it in a sense.

Construction: finite fields

Theorem (Bush, 1952)

For a prime power q and a positive integer $t \geq 1, \mathrm{OA}\left(q^{t}, q+1, q, t\right)$ exists.
Proof: Let f_{1}, \ldots, f_{N} be the polynomials of degree at most $t-1$ in $\mathbb{F}_{q}[x]$, where $N=q^{t}$. Define an $N \times q$ matrix M with rows indexed by $\{1, \ldots, N\}$ and columns indexed by the elements of \mathbb{F}_{q} as

$$
M_{i, \alpha}=f_{i}(\alpha) .
$$

Append the column to the matrix M to make $N \times(q+1)$ matrix M^{\prime} so that

$$
\left(M^{\prime}\right)_{i, q+1}=\text { the coefficient of } x^{t-1} \text { in } f_{i} .
$$

Then M^{\prime} is an $\mathrm{OA}(N, q+1, q, t)$.

Construction: finite fields

Theorem (Bush, 1952)

For a prime power q and a positive integer $t \geq 1, \mathrm{OA}\left(q^{t}, q+1, q, t\right)$ exists.
Example for $q=2$ and $t=2$.

- $\left(f_{1}, \ldots, f_{4}\right)=(0,1, x, x+1)$: the polynomials of degree at most 1 in $\mathbb{F}_{2}[x]$
- Define a 4×2 matrix M by $M_{i, \alpha}=f_{i}(\alpha)$ and append the column to M to make M^{\prime} :

$$
M^{\prime}=\begin{aligned}
& f_{1}=0 \\
& f_{2}=1 \\
& f_{3}=x \\
& f_{4}=x+1
\end{aligned} \quad\left(\begin{array}{lll}
0 & 1 & * \\
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

where * is the column of the coefficient of x in f_{i}.

- Then M^{\prime} is an $\mathrm{OA}(4,3,2,2)$.

Construction: finite fields

For $q=2^{m}$ and $t=3$, one more column can be added.

Theorem (Bush, 1952)

For $q=2^{m}, \mathrm{OA}\left(q^{3}, q+2, q, 3\right)$ exists.
Construction: Append to the constructed matrix M^{\prime} one column defined by i-th entry equal to the coefficient of x in the polynomial $f_{i}(x)$.
Example for $q=2$.

- $\left(f_{1}, \ldots, f_{8}\right)=$
$\left(0,1, x, x+1, x^{2}, 1+x^{2}, x+x^{2}, 1+x+x^{2}\right):$ the polynomials of degree at most 2 in $\mathbb{F}_{2}[x]$
- Define a 8×4 matrix $M^{\prime \prime}=\left(M^{\prime}, * *\right)$ where M^{\prime} is the same as before and $* *$ is the column of the coefficient of x in f_{i}.
- Then $M^{\prime \prime}$ is an $\mathrm{OA}(8,4,2,3)$.

Construction: Hadamard matrices

- A Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\{1,-1\}$ such that $H H^{\top}=n I$.
- Examples: - stands for -1

$$
H=\left(\begin{array}{cc}
1 & 1 \\
1 & -
\end{array}\right), \quad H=\left(\begin{array}{cccc}
- & - & - & - \\
1 & 1 & - & - \\
- & 1 & - & 1 \\
1 & - & - & 1
\end{array}\right) .
$$

- The order of a Hadamard matrix is 1,2 or a multiple of four. The other implication is known as the Hadamard conjecture.
- The smallest order for which no Hadamard matrix is known is 668 . Until 2005, it was 428. Kharaghani and Tayfeh-Razaie constructed a Hadamard matrix of order 428.
- Many constructions: the Kronecker product, Paley digraphs, the plug-in method in orthogonal designs, etc.

Construction: Hadamard matrices

- A Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\{1,-1\}$ such that $H H^{\top}=n I$.

Theorem

1. Let H be a Hadamard matrix of order n. Then the matrix

$$
M=\binom{H}{-H}
$$

is an $\mathrm{OA}(2 n, n, 2,3)$.
2. Conversely, any $\mathrm{OA}(2 n, n, 2,3)$ is obtained in this way by a Hadamard matrix of order n.

Construction: linear codes

- Let q be a prime power, and \mathbb{F}_{q} be the finite field of order q.
- A linear code of length n over \mathbb{F}_{q} is a subspace of the vector space \mathbb{F}_{q}^{n} over \mathbb{F}_{q}.
- For $x=\left(x_{i}\right)_{i=1}^{n}, y=\left(y_{i}\right)_{i=1}^{n} \in \mathbb{F}_{q}^{n}$, define the Hamming distance between x and y by

$$
d(x, y)=\left|\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq y_{i}\right\}\right| .
$$

- For a linear code C, the minimum distance d is $\min \{d(x, y) \mid x, y \in C, x \neq y\}$.
- The dual code C^{\perp} of C is $\left\{y \in \mathbb{F}_{q}^{n} \mid\langle x, y\rangle=0\right.$ for any $\left.x \in C\right\}$, where $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$.

Theorem

Let C be a linear code of length n over \mathbb{F}_{q} such that the dual code C^{\perp} has minimum distance d^{\perp}. Then the matrix whose rows consist of the vectors of C is an $\mathrm{OA}\left(|C|, n, q, d^{\perp}-1\right)$.

Tight orthogonal arrays

The lower bound for N on $\mathrm{OA}(N, n, q, t)$ was given by Rao as follows:

$$
N \geq\left\{\begin{array}{l}
\sum_{k=0}^{e}\binom{n}{k}(q-1)^{k} \text { if } t=2 e, \tag{1}\\
\sum_{k=0}^{e}\binom{n}{k}(q-1)^{k}+\binom{n-1}{e}(q-1)^{e+1} \text { if } t=2 e+1 .
\end{array}\right.
$$

An OA is said to be tight if it achieves (1).

Tight orthogonal arrays

The lower bound for N on $\mathrm{OA}(N, n, q, t)$ was given by Rao as follows:

$$
N \geq\left\{\begin{array}{l}
\sum_{k=0}^{e}\binom{n}{k}(q-1)^{k} \text { if } t=2 e, \tag{1}\\
\sum_{k=0}^{e}\binom{n}{k}(q-1)^{k}+\binom{n-1}{e}(q-1)^{e+1} \text { if } t=2 e+1 .
\end{array}\right.
$$

An OA is said to be tight if it achieves (1).

- Define the degree set of an orthogonal array M by

$$
S(M):=\{d(x, y) \mid x, y \text { are distinct rows of } M\} .
$$

- $s:=|S(M)|$ is said to be degree.
- Define $K_{n, q, j}(x)=\sum_{k=0}^{j}(-1)^{k}(q-1)^{j-k}\binom{x}{j}\binom{n-x}{j-k}$, known as Krautchouk polynomials.

Tight orthogonal arrays

The lower bound for N on $\mathrm{OA}(N, n, q, t)$ was given by Rao as follows:

$$
N \geq\left\{\begin{array}{l}
\sum_{k=0}^{e}\binom{n}{k}(q-1)^{k} \text { if } t=2 e \tag{1}\\
\sum_{k=0}^{e}\binom{n}{k}(q-1)^{k}+\binom{n-1}{e}(q-1)^{e+1} \text { if } t=2 e+1
\end{array}\right.
$$

An OA is said to be tight if it achieves (1).

- Define the degree set of an orthogonal array M by

$$
S(M):=\{d(x, y) \mid x, y \text { are distinct rows of } M\} .
$$

- $s:=|S(M)|$ is said to be degree.
- Define $K_{n, q, j}(x)=\sum_{k=0}^{j}(-1)^{k}(q-1)^{j-k}\binom{x}{j}\binom{n-x}{j-k}$, known as Krautchouk polynomials.

Theorem (Delsarte 1973, Noda 1986)

Let M be a tight $\mathrm{OA}(N, n, q, t)$. Then $s=[(t+1) / 2]$, and $n \in S(M)$ if t odd, and

$$
|M| \prod_{\alpha \in S(M) \backslash\{n\}}(1-x / \alpha)=\sum_{j=0}^{[t / 2]} K_{n-\varepsilon, q, j}(x),
$$

where ε is 0 if t even and 1 if t odd.

Tight orthogonal arrays with even strength

Theorem (Delsarte 1973, Noda 1986)

Let M be a tight $\mathrm{OA}(N, n, q, t)$. Then $s=[(t+1) / 2]$, and $n \in S(M)$ if t odd, and

$$
|M| \prod_{\alpha \in S(M) \backslash\{n\}}(1-x / \alpha)=\sum_{j=0}^{[t / 2]} K_{n-\varepsilon, q, j}(x),
$$

where ε is 0 if t even and 1 if t odd.
In particular, if there exists a tight $\mathrm{OA}(N, n, q, 2 e), \sum_{j=0}^{e} K_{n, q, j}(x)$ has exactly e distinct integral zeros in the interval $[1, n]$.

Tight orthogonal arrays with even strength

Theorem (Delsarte 1973, Noda 1986)

Let M be a tight $\mathrm{OA}(N, n, q, t)$. Then $s=[(t+1) / 2]$, and $n \in S(M)$ if t odd, and

$$
|M| \prod_{\alpha \in S(M) \backslash\{n\}}(1-x / \alpha)=\sum_{j=0}^{[t / 2]} K_{n-\varepsilon, q, j}(x),
$$

where ε is 0 if t even and 1 if t odd.
In particular, if there exists a tight $\mathrm{OA}(N, n, q, 2 e), \sum_{j=0}^{e} K_{n, q, j}(x)$ has exactly e distinct integral zeros in the interval $[1, n]$. This yields non-existence results for

- $e=2, q \neq 6$ by Noda (1979)
- $e \geq 3, q \geq 3$ by Hong (1986)
- $e=3, q=2$ and $e=4,5,6, q=2, n \leq 10^{9}$ by Mukerjee and Kageyama (1994)

The case $e=2, q=6$ was ruled out by Gavrilyuk-S.-Vidali (2019) using association schemes. Note that there are many tight $\mathrm{OA}(N, n, q, 2)$.

Tight orthogonal arrays with even strength

The remaining cases for classification of tight $\mathrm{OA}(N, n, q, 2 e)$ are:

- q arbitrary, $e=1$ with $n \geq 2$ (It seems that the classification is hopeless, because there are many examples and essentially this includes the classification of Hadamard matrices.)
- $q=2$ and $e \geq 4$ with $n \geq 2 e+1$

Open Problem

Can we show the non-existence for tight $\mathrm{OA}(N, n, 2,2 e)$ for $e \geq 4$ with $n \geq 2 e$? (Existence of a non-integer root of the polynomial

$$
\sum_{j=0}^{e} K_{n, 2, j}(x)=\sum_{j=0}^{e} \sum_{k=0}^{j}(-1)^{k}\binom{x}{j}\binom{n-x}{j-k}
$$

implies an affirmative answer above.)
For $e=4$, the following are the roots of $\sum_{j=0}^{4} K_{n, 2, j}(x)=0$:

$$
x=\frac{1}{2}\left(n+1 \pm \sqrt{3 n-7 \pm \sqrt{6 n^{2}-30 n+40}}\right) .
$$

Tight orthogonal arrays with odd strength

Theorem

Let C be a tight $\mathrm{OA}(N, n, q, 2 e+1)$.
Then $C_{i}=\left\{\left(x_{2}, \ldots, x_{n}\right) \mid\left(i, x_{2}, \ldots, x_{n}\right) \in C\right\}$ is a tight $\mathrm{OA}(N, n-1, q, 2 e)$.

- There are no tight $\mathrm{OA}(N, n, q, 2 e+1)$ with $2 e+1 \geq 5$ and $q \geq 3$.

Theorem (Noda, 1986)

Let C be a tight $\mathrm{OA}(N, n, q, 3)$. Then one of the following holds:

1. $(N, n, q)=(2 n, n, 2)$ with $n \equiv 0(\bmod 4)$,
2. $(N, n, q)=\left(q^{3}, q+2, q\right)$ with q even.

- The first case is equivalent to a Hadamard matrix of order n.
- The second case exists if q is a power of $2 . C_{i}, 1 \leq i \leq q$, a complete set of MOLS of order q. The value q is conjectured to be a power of 2 .

Tight OA $\left(q^{3}, q+2, q, 3\right)$

Theorem (Noda, 1986)

Let C be a tight $\mathrm{OA}(N, n, q, 3)$. Then one of the following holds:

1. $(N, n, q)=(2 n, n, 2)$ with $n \equiv 0(\bmod 4)$,
2. $(N, n, q)=\left(q^{3}, q+2, q\right)$ with q even.

Theorem (Gavrilyuk-S., 2022)

If there exists a tight $\mathrm{OA}\left(q^{3}, q+2, q, 3\right)$ with $q>2$, then q is a multiple of four.

- It is known by Delsarte (1974) that a tight OA $\left(q^{3}, q+2, q, 3\right)$ yields a symmetric association scheme of 2 classes ($=$ a strongly regular graph). Sketch of proof:

1. The 2 -class association schemes has a 3 -class fission scheme.
2. Calculating triple intersection numbers of the 3-class scheme yields the condition $q \equiv 0(\bmod 4)$ if $q>2$.
For the details of the proof and association schemes, please search my recorded talk at "Stinson66 - New Advances in Designs, Codes and Cryptography".

Extremal orthogonal arrays

Theorem (Delsarte, 1973)

Let M be an $\mathrm{OA}(N, n, q, t)$ with degree s. Then $t \leq 2 s$ holds, with equality if and only if M is a tight OA with $t=2 s$.

We call $\mathrm{OA}(N, n, q, t)$ extremal if $t \geq 2 s-1$ holds.
In the block design, the same concept was introduced and studied by lonin and Shrikhande.

- V is a finite set with v elements, called points.
$-\mathcal{B}$ is a family of k-element subsets of V, called blocks.
- (V, \mathcal{B}) is a $t-(v, k, \lambda)$ design if any t-element subset of V is contained exactly λ blocks.
- The degree of the design (V, \mathcal{B}) is the number of intersection of the distinct blocks:

$$
s=\left|\left\{\left|B \cap B^{\prime}\right| \mid B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime}\right\}\right|
$$

Extremal t-designs

In the block design, the same concept was introduced and studied by lonin and Shrikhande.

- V is a finite set with v elements, called points.
- \mathcal{B} is a family of k-element subsets of V, called blocks.
- (V, \mathcal{B}) is a $t-(v, k, \lambda)$ design if any t-element subset of V is contained exactly λ blocks.
- The degree or intersection numbers of the design (V, \mathcal{B}) is the number of intersection of the distinct blocks:

$$
s=\left|\left\{\left|B \cap B^{\prime}\right| \mid B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime}\right\}\right|
$$

Theorem

1. For a $2 e-(v, k, \lambda)$ design $(V, \mathcal{B}),|\mathcal{B}| \geq\binom{ v}{e}$.
2. For a t-design (V, \mathcal{B}) with s intersection numbers, $t \leq 2 s$ holds, with equality if and only if $t=2 s$ and the design attains the bound in 1 (called a tight design).
lonin and Shrikhande called t-designs with s intersection numbers extremal if $t \geq 2 s-1$.

Extremal t-designs

- V is a finite set with v-elements, called points.
- \mathcal{B} is a family of k-element subsets of V, called blocks.
- (V, \mathcal{B}) is a $t-(v, k, \lambda)$ design if any t-element subset of V is contained exactly λ blocks.
- The degree s or intersection numbers of the design (V, \mathcal{B}) is the number of intersection of the distinct blocks:

$$
s=\left|\left\{\left|B \cap B^{\prime}\right| \mid B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime}\right\}\right|
$$

lonin and Shrikhande called t-designs with s intersection numbers extremal if $t \geq 2 s-1$.

Theorem (lonin-Shrikhande, 1993)

Let (V, \mathcal{B}) be a $(2 s-1)-(v, k, \lambda)$ design with s intersection numbers x_{1}, \ldots, x_{s}. Then

$$
\frac{(s-1)(k-s)(k-s+1)}{v-2 s+2} \leq \sum_{i=1}^{s} x_{i}-\frac{s(s-1)}{2} \leq \frac{s(k-s)(k-s+1)}{v-2 s+2}
$$

with equality in the lower bound iff one of the intersection numbers is zero, and with equality in the upper bound iff $t=2 s$ (that is, (V, \mathcal{B}) is a tight design).

Extremal orthogonal arrays

Theorem (Gavrilyuk-S., 2024)

Let M be an extremal $\mathrm{OA}(N, n, q, 2 s-1)$ with s distinct Hamming distances with

$$
\{n-d(x, y) \mid x, y \text { are dinstinct rows of } M\}=\left\{x_{1}, \ldots, x_{s}\right\}, x_{1}<\cdots<x_{s}
$$

Then

$$
\frac{(s-1)(n-s)}{q} \leq \sum_{i=1}^{s} x_{i}-\frac{s(s-1)}{2} \leq \frac{s(n-s)}{q}
$$

with equality in the left if and only if $x_{1}=0$, and with equality in the right if and only if M is tight

Note that for a tight $\mathrm{OA}(N, n, q, 2 s), n-x_{1}, \ldots, n-x_{s}$ are uniquely determined as the zeros of the polynomial $\sum_{j=0}^{s} K_{n, q, j}(x)$.

- For distinct non-negative integers x_{1}, x_{2}, \ldots, define $\left.F_{j}^{(k)}(k \geq 1,0 \leq j \leq k\}\right)$ as follows: $F_{0}^{(k)}=1, F_{k}^{(k)}=x_{1} \cdots x_{k}$ and

$$
F_{j}^{(k)}=F_{j}^{(k-1)}+\left(x_{k}-k+j\right) F_{j-1}^{(k-1)} \quad(k \geq 2,1 \leq j \leq k)
$$

Lemma (Gavrilyuk-S., 2024)

Let M be an extremal $\mathrm{OA}(N, n, q, 2 s-1)$ with s distinct Hamming distances with

$$
\{n-d(x, y) \mid x, y \text { are distinct rows of } M\}=\left\{x_{1}, \ldots, x_{s}\right\}, x_{1}<\cdots<x_{s}
$$

Then, for $0 \leq \ell \leq s$,

$$
\sum_{j=0}^{s}(-1)^{j}(n-\ell)_{s-j} \lambda_{s-j} F_{j}^{(s)}=\delta_{\ell, 0} \prod_{i=1}^{s}\left(n-x_{i}\right)
$$

where $\lambda_{j}=\frac{N}{q^{j}}$ and $(a)_{m}=a(a-1) \cdots(a-m+1),(a)_{0}=1$.

Sketch of proof:

Regarding a vector $\left(x_{1}, \ldots, x_{n}\right)$ of length n with entries $\{1, \ldots, q\}$ as a set $\left\{\left(1, x_{1}\right), \ldots,\left(n, x_{n}\right)\right\}$. Fixing a row y of the OA, double counting the set

$$
\{(x, I) \mid x \text { is a row of the } \mathrm{OA},|I|=i, I \subset x \cap y\}
$$

with some calculation yields the result.

- For distinct non-negative integers x_{1}, x_{2}, \ldots, define $\left.F_{j}^{(k)}(k \geq 1,0 \leq j \leq k\}\right)$ as follows: $F_{0}^{(k)}=1, F_{k}^{(k)}=x_{1} \cdots x_{k}$ and

$$
F_{j}^{(k)}=F_{j}^{(k-1)}+\left(x_{k}-k+j\right) F_{j-1}^{(k-1)} \quad(k \geq 2,1 \leq j \leq k)
$$

Lemma (Gavrilyuk-S., 2024)

Let M be an extremal $\mathrm{OA}(N, n, q, 2 s-1)$ with s distinct Hamming distances with

$$
\{n-d(x, y) \mid x, y \text { are distinct rows of } M\}=\left\{x_{1}, \ldots, x_{s}\right\}, x_{1}<\cdots<x_{s}
$$

Then, for $0 \leq \ell \leq s$,

$$
\sum_{j=0}^{s}(-1)^{j}(n-\ell)_{s-j} \lambda_{s-j} F_{j}^{(s)}=\delta_{\ell, 0} \prod_{i=1}^{s}\left(n-x_{i}\right)
$$

where $\lambda_{j}=\frac{N}{q^{j}}$ and $(a)_{m}=a(a-1) \cdots(a-m+1),(a)_{0}=1$.
Solving a system of linear equations whose unknowns are $F_{j}^{(s)}, 1 \leq j \leq s$ yields:

$$
F_{j}^{(s)}=\frac{(n-s+j-1)_{j-1}}{q^{j-1}}\left(\binom{s-1}{j-1} F_{1}^{(s)}-\frac{\left((s-1)\binom{s-1}{j-1}-\binom{s-1}{j}\right)(n-s)}{q}\right)
$$

Lower bound: $\frac{(s-1)(n-s)}{q}+\frac{s(s-1)}{2} \leq \sum_{i=1}^{s} x_{i}$

- For distinct non-negative integers x_{1}, x_{2}, \ldots, define $\left.F_{j}^{(k)}(k \geq 1,0 \leq j \leq k\}\right)$ as follows: $F_{0}^{(k)}=1, F_{k}^{(k)}=x_{1} \cdots x_{k}$ and

$$
F_{j}^{(k)}=F_{j}^{(k-1)}+\left(x_{k}-k+j\right) F_{j-1}^{(k-1)} \quad(k \geq 2,1 \leq j \leq k)
$$

Then:

$$
F_{s}^{(s)}=\frac{(n-1)_{s-1}}{q^{s-1}}\left(F_{1}^{(s)}-\frac{(s-1)(n-s)}{q}\right)
$$

- Since $F_{s}^{(s)}=x_{1} \cdots x_{s} \geq 0$ and $F_{1}^{(s)}=\sum_{i=1}^{s} x_{i}-\frac{s(s-1)}{2}$, we have

$$
\frac{(s-1)(n-s)}{q}+\frac{s(s-1)}{2} \leq \sum_{i=1}^{s} x_{i}
$$

which proves the lower bound on $\sum_{i=1}^{s} x_{i}$.

Upper bound: $\sum_{i=1}^{s} x_{i} \leq \frac{s(n-s)}{q}+\frac{s(s-1)}{2}$

Lemma

1. (lonin-Shrikhande, 1993) $\sum_{j=0}^{s}(-1)^{j} F_{j}^{(s)} \cdot(z)_{s-j}=\prod_{i=1}^{s}\left(z-x_{i}\right)$, where z is an indeterminate.
2. (Gavrilyuk-S., 2024) $N \sum_{j=0}^{s}(-1)^{j} F_{j}^{(s)} \frac{(n)_{s-j}}{q^{s-j}}=\prod_{i=1}^{s}\left(n-x_{i}\right)$.

Eliminating $\prod_{i=1}^{s}\left(n-x_{i}\right)$ by setting $z=n$, and using the upper bound on s-distinct Hamming distance code:

$$
N \leq \sum_{k=0}^{s}\binom{n}{k}(q-1)^{k}=: M
$$

we obtain:

$$
\sum_{j=0}^{s}(-1)^{j} F_{j}^{(s)}(n)_{s-j} \leq M \sum_{j=0}^{s}(-1)^{j} F_{j}^{(s)} \frac{(n)_{s-j}}{q^{s-j}}
$$

Substituting

$$
F_{j}^{(s)}=\frac{(n-s+j-1)_{j-1}}{q^{j-1}}\left(\binom{s-1}{j-1} F_{1}^{(s)}-\frac{\left((s-1)\binom{s-1}{j-1}-\binom{s-1}{j}\right)(n-s)}{q}\right)
$$

into the above inequality and simplifying this, we have

$$
\sum_{i=1}^{s} x_{i} \leq \frac{s(n-s)}{q}+\frac{s(s-1)}{2}
$$

Summary

- Orthogonal arrays;
- Construction by finite fields, linear codes, Hadamard matrices;
- Rao's lower bound and tight orthogonal arrays;
- Extremal orthogonal arrays.

Thank you for your attention!

