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Introduction

▶ Orthogonal arrays were introduced by Rao in 1946 and appeared in statistics.
Later, applications were found, for examples:
▶ authentication codes;
▶ (t, w)-threshold schemes.

Definition (Orthogonal arrays)

An orthogonal array OA(N,n, q, t) is an N × n matrix M with entries the
numbers 0, 1, . . . , q − 1 such that in any N × t submatrix of M all possible row
vectors of length t occur λ := N

qt times.

Example: OA(N = 8, n = 4, q = 2, t = 3), 8× 4 matrix with 2 symbols

M =



0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
1 1 1 1


Any 8× 3 submatrix have rows 000, 001, . . . , 111
exactly λ = 8

23 = 1 time.
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Research on orthogonal arrays

1. Construction: Using finite fields, (linear) codes, Hadamard matrices, etc.

2. Restriction of parameters: Rao’s bound, etc.

3. Structure: Association schemes, automorphism groups, etc.

4. Applications

In this talk, I will review constructions and Rao’s bound, and deal with orthogonal
arrays which attain Rao’s bound and are close to it in a sense.
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Construction: finite fields

Theorem (Bush, 1952)

For a prime power q and a positive integer t ≥ 1, OA(qt, q + 1, q, t) exists.

Proof: Let f1, . . . , fN be the polynomials of degree at most t− 1 in Fq[x], where
N = qt. Define an N × q matrix M with rows indexed by {1, . . . , N} and
columns indexed by the elements of Fq as

Mi,α = fi(α).

Append the column to the matrix M to make N × (q + 1) matrix M ′ so that

(M ′)i,q+1 = the coefficient of xt−1 in fi.

Then M ′ is an OA(N, q + 1, q, t).

Sho Suda (National Defense Academy of Japan) Extremal orthogonal arrays March 13, 2024 4 / 23



Construction: finite fields

Theorem (Bush, 1952)

For a prime power q and a positive integer t ≥ 1, OA(qt, q + 1, q, t) exists.

Example for q = 2 and t = 2.

▶ (f1, . . . , f4) = (0, 1, x, x+ 1): the polynomials of degree at most 1 in F2[x]

▶ Define a 4× 2 matrix M by Mi,α = fi(α) and append the column to M to
make M ′:

M ′ =


0 1 ∗

f1 = 0 0 0 0
f2 = 1 1 1 0
f3 = x 1 0 1
f4 = x+ 1 0 1 1


where * is the column of the coefficient of x in fi.

▶ Then M ′ is an OA(4, 3, 2, 2).
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Construction: finite fields

For q = 2m and t = 3, one more column can be added.

Theorem (Bush, 1952)

For q = 2m, OA(q3, q + 2, q, 3) exists.

Construction: Append to the constructed matrix M ′ one column defined by i-th
entry equal to the coefficient of x in the polynomial fi(x).
Example for q = 2.

▶ (f1, . . . , f8) =
(0, 1, x, x+1, x2, 1+ x2, x+ x2, 1+ x+ x2):
the polynomials of degree at most 2 in F2[x]

▶ Define a 8× 4 matrix M ′′ = (M ′, ∗∗) where
M ′ is the same as before and ∗∗ is the
column of the coefficient of x in fi.

▶ Then M ′′ is an OA(8, 4, 2, 3).



0 1 ∗ ∗∗
f1 0 0 0 0
f2 1 1 0 0
f3 0 1 0 1
f4 1 0 0 1
f5 0 1 1 0
f6 1 0 1 0
f7 0 0 1 1
f8 1 1 1 1
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Construction: Hadamard matrices

▶ A Hadamard matrix of order n is an n× n matrix H with entries in {1,−1}
such that HH⊤ = nI.

▶ Examples: − stands for −1

H =

(
1 1
1 −

)
, H =


− − − −
1 1 − −
− 1 − 1
1 − − 1

 .

▶ The order of a Hadamard matrix is 1, 2 or a multiple of four. The other
implication is known as the Hadamard conjecture.

▶ The smallest order for which no Hadamard matrix is known is 668. Until
2005, it was 428. Kharaghani and Tayfeh-Razaie constructed a Hadamard
matrix of order 428.

▶ Many constructions: the Kronecker product, Paley digraphs, the plug-in
method in orthogonal designs, etc.
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Construction: Hadamard matrices

▶ A Hadamard matrix of order n is an n× n matrix H with entries in {1,−1}
such that HH⊤ = nI.

Theorem
1. Let H be a Hadamard matrix of order n. Then the matrix

M =

(
H
−H

)
is an OA(2n, n, 2, 3).

2. Conversely, any OA(2n, n, 2, 3) is obtained in this way by a Hadamard matrix
of order n.
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Construction: linear codes

▶ Let q be a prime power, and Fq be the finite field of order q.

▶ A linear code of length n over Fq is a subspace of the vector space Fn
q over

Fq.

▶ For x = (xi)
n
i=1, y = (yi)

n
i=1 ∈ Fn

q , define the Hamming distance between x
and y by

d(x, y) = |{i ∈ {1, . . . , n} | xi ̸= yi}|.
▶ For a linear code C, the minimum distance d is

min{d(x, y) | x, y ∈ C, x ̸= y}.
▶ The dual code C⊥ of C is {y ∈ Fn

q | ⟨x, y⟩ = 0 for any x ∈ C}, where
⟨x, y⟩ =

∑n
i=1 xiyi.

Theorem

Let C be a linear code of length n over Fq such that the dual code C⊥ has
minimum distance d⊥. Then the matrix whose rows consist of the vectors of C is
an OA(|C|, n, q, d⊥ − 1).
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Tight orthogonal arrays

The lower bound for N on OA(N,n, q, t) was given by Rao as follows:

N ≥

{∑e
k=0

(
n
k

)
(q − 1)k if t = 2e,∑e

k=0

(
n
k

)
(q − 1)k +

(
n−1
e

)
(q − 1)e+1 if t = 2e+ 1.

(1)

An OA is said to be tight if it achieves (1).

▶ Define the degree set of an orthogonal array M by

S(M) := {d(x, y) | x, y are distinct rows of M}.

▶ s := |S(M)| is said to be degree.

▶ Define Kn,q,j(x) =
∑j

k=0(−1)k(q − 1)j−k
(
x
j

)(
n−x
j−k

)
, known as Krautchouk

polynomials.

Theorem (Delsarte 1973, Noda 1986)

Let M be a tight OA(N,n, q, t). Then s = [(t+ 1)/2], and n ∈ S(M) if t odd,
and

|M |
∏

α∈S(M)\{n}

(1− x/α) =

[t/2]∑
j=0

Kn−ε,q,j(x),

where ε is 0 if t even and 1 if t odd.
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Tight orthogonal arrays with even strength

Theorem (Delsarte 1973, Noda 1986)

Let M be a tight OA(N,n, q, t). Then s = [(t+ 1)/2], and n ∈ S(M) if t odd,
and

|M |
∏

α∈S(M)\{n}

(1− x/α) =

[t/2]∑
j=0

Kn−ε,q,j(x),

where ε is 0 if t even and 1 if t odd.

In particular, if there exists a tight OA(N,n, q, 2e),
∑e

j=0 Kn,q,j(x) has exactly e
distinct integral zeros in the interval [1, n].

This yields non-existence results for

▶ e = 2, q ̸= 6 by Noda (1979)

▶ e ≥ 3, q ≥ 3 by Hong (1986)

▶ e = 3, q = 2 and e = 4, 5, 6, q = 2, n ≤ 109 by Mukerjee and Kageyama
(1994)

The case e = 2, q = 6 was ruled out by Gavrilyuk-S.-Vidali (2019) using
association schemes. Note that there are many tight OA(N,n, q, 2).
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Tight orthogonal arrays with even strength

The remaining cases for classification of tight OA(N,n, q, 2e) are:
▶ q arbitrary, e = 1 with n ≥ 2 (It seems that the classification is hopeless,

because there are many examples and essentially this includes the
classification of Hadamard matrices.)

▶ q = 2 and e ≥ 4 with n ≥ 2e+ 1

Open Problem

Can we show the non-existence for tight OA(N,n, 2, 2e) for e ≥ 4 with n ≥ 2e?
(Existence of a non-integer root of the polynomial

e∑
j=0

Kn,2,j(x) =

e∑
j=0

j∑
k=0

(−1)k
(
x

j

)(
n− x

j − k

)

implies an affirmative answer above.)

For e = 4, the following are the roots of
∑4

j=0 Kn,2,j(x) = 0:

x =
1

2

(
n+ 1±

√
3n− 7±

√
6n2 − 30n+ 40

)
.
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Tight orthogonal arrays with odd strength

Theorem

Let C be a tight OA(N,n, q, 2e+ 1).
Then Ci = {(x2, . . . , xn) | (i, x2, . . . , xn) ∈ C} is a tight OA(N,n− 1, q, 2e).

▶ There are no tight OA(N,n, q, 2e+ 1) with 2e+ 1 ≥ 5 and q ≥ 3.

Theorem (Noda, 1986)

Let C be a tight OA(N,n, q, 3). Then one of the following holds:

1. (N,n, q) = (2n, n, 2) with n ≡ 0 (mod 4),

2. (N,n, q) = (q3, q + 2, q) with q even.

▶ The first case is equivalent to a Hadamard matrix of order n.

▶ The second case exists if q is a power of 2. Ci, 1 ≤ i ≤ q, a complete set of
MOLS of order q. The value q is conjectured to be a power of 2.
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Tight OA(q3, q + 2, q, 3)

Theorem (Noda, 1986)

Let C be a tight OA(N,n, q, 3). Then one of the following holds:

1. (N,n, q) = (2n, n, 2) with n ≡ 0 (mod 4),

2. (N,n, q) = (q3, q + 2, q) with q even.

Theorem (Gavrilyuk-S., 2022)

If there exists a tight OA(q3, q + 2, q, 3) with q > 2, then q is a multiple of four.

▶ It is known by Delsarte (1974) that a tight OA(q3, q + 2, q, 3) yields a
symmetric association scheme of 2 classes (= a strongly regular graph).

Sketch of proof:

1. The 2-class association schemes has a 3-class fission scheme.

2. Calculating triple intersection numbers of the 3-class scheme yields the
condition q ≡ 0 (mod 4) if q > 2.

For the details of the proof and association schemes, please search my recorded
talk at “Stinson66 - New Advances in Designs, Codes and Cryptography”.
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Extremal orthogonal arrays

Theorem (Delsarte, 1973)

Let M be an OA(N,n, q, t) with degree s. Then t ≤ 2s holds, with equality if and
only if M is a tight OA with t = 2s.

We call OA(N,n, q, t) extremal if t ≥ 2s− 1 holds.
In the block design, the same concept was introduced and studied by Ionin and
Shrikhande.

▶ V is a finite set with v elements, called points.

▶ B is a family of k-element subsets of V , called blocks.

▶ (V,B) is a t-(v, k, λ) design if any t-element subset of V is contained exactly
λ blocks.

▶ The degree of the design (V,B) is the number of intersection of the distinct
blocks:

s = |{|B ∩B′| | B,B′ ∈ B, B ̸= B′}|
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Extremal t-designs

In the block design, the same concept was introduced and studied by Ionin and
Shrikhande.
▶ V is a finite set with v elements, called points.
▶ B is a family of k-element subsets of V , called blocks.
▶ (V,B) is a t-(v, k, λ) design if any t-element subset of V is contained exactly

λ blocks.
▶ The degree or intersection numbers of the design (V,B) is the number of

intersection of the distinct blocks:

s = |{|B ∩B′| | B,B′ ∈ B, B ̸= B′}|

Theorem

1. For a 2e-(v, k, λ) design (V,B), |B| ≥
(
v
e

)
.

2. For a t-design (V,B) with s intersection numbers, t ≤ 2s holds, with equality
if and only if t = 2s and the design attains the bound in 1 (called a tight
design).

Ionin and Shrikhande called t-designs with s intersection numbers extremal if
t ≥ 2s− 1.
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Extremal t-designs

▶ V is a finite set with v-elements, called points.
▶ B is a family of k-element subsets of V , called blocks.
▶ (V,B) is a t-(v, k, λ)design if any t-element subset of V is contained exactly

λ blocks.
▶ The degree s or intersection numbers of the design (V,B) is the number of

intersection of the distinct blocks:

s = |{|B ∩B′| | B,B′ ∈ B, B ̸= B′}|
Ionin and Shrikhande called t-designs with s intersection numbers extremal if
t ≥ 2s− 1.

Theorem (Ionin-Shrikhande, 1993)

Let (V,B) be a (2s− 1)-(v, k, λ) design with s intersection numbers x1, . . . , xs.
Then

(s− 1)(k − s)(k − s+ 1)

v − 2s+ 2
≤

s∑
i=1

xi −
s(s− 1)

2
≤ s(k − s)(k − s+ 1)

v − 2s+ 2
,

with equality in the lower bound iff one of the intersection numbers is zero, and
with equality in the upper bound iff t = 2s (that is, (V,B) is a tight design).
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Extremal orthogonal arrays

Theorem (Gavrilyuk-S., 2024)

Let M be an extremal OA(N,n, q, 2s− 1) with s distinct Hamming distances with

{n− d(x, y) | x, y are dinstinct rows of M} = {x1, . . . , xs}, x1 < · · · < xs.

Then
(s− 1)(n− s)

q
≤

s∑
i=1

xi −
s(s− 1)

2
≤ s(n− s)

q
,

with equality in the left if and only if x1 = 0, and with equality in the right if and
only if M is tight

Note that for a tight OA(N,n, q, 2s), n− x1, . . . , n− xs are uniquely determined
as the zeros of the polynomial

∑s
j=0 Kn,q,j(x).
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▶ For distinct non-negative integers x1, x2, . . ., define F
(k)
j (k ≥ 1, 0 ≤ j ≤ k}) as follows:

F
(k)
0 = 1, F

(k)
k = x1 · · ·xk and

F
(k)
j = F

(k−1)
j + (xk − k + j)F

(k−1)
j−1 (k ≥ 2, 1 ≤ j ≤ k).

Lemma (Gavrilyuk-S., 2024)

Let M be an extremal OA(N,n, q, 2s− 1) with s distinct Hamming distances with

{n− d(x, y) | x, y are distinct rows of M} = {x1, . . . , xs}, x1 < · · · < xs.

Then, for 0 ≤ ℓ ≤ s,

s∑
j=0

(−1)j(n− ℓ)s−jλs−jF
(s)
j = δℓ,0

s∏
i=1

(n− xi)

where λj = N
qj

and (a)m = a(a− 1) · · · (a−m+ 1), (a)0 = 1.

Sketch of proof:
Regarding a vector (x1, . . . , xn) of length n with entries {1, . . . , q} as a set
{(1, x1), . . . , (n, xn)}. Fixing a row y of the OA, double counting the set

{(x, I) | x is a row of the OA , |I| = i, I ⊂ x ∩ y}

with some calculation yields the result.
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▶ For distinct non-negative integers x1, x2, . . ., define F
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qj

and (a)m = a(a− 1) · · · (a−m+ 1), (a)0 = 1.

Solving a system of linear equations whose unknowns are F
(s)
j , 1 ≤ j ≤ s yields:

F
(s)
j =

(n− s+ j − 1)j−1

qj−1

((s− 1

j − 1

)
F

(s)
1 −

((s− 1)
(s−1
j−1

)
−
(s−1

j

)
)(n− s)

q

)
.
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Lower bound: (s−1)(n−s)
q + s(s−1)

2 ≤
∑s

i=1 xi

▶ For distinct non-negative integers x1, x2, . . ., define F
(k)
j (k ≥ 1, 0 ≤ j ≤ k})

as follows: F
(k)
0 = 1, F

(k)
k = x1 · · ·xk and

F
(k)
j = F

(k−1)
j + (xk − k + j)F

(k−1)
j−1 (k ≥ 2, 1 ≤ j ≤ k).

Then:

F (s)
s =

(n− 1)s−1

qs−1

(
F

(s)
1 − (s− 1)(n− s)

q

)
.

▶ Since F
(s)
s = x1 · · ·xs ≥ 0 and F

(s)
1 =

∑s
i=1 xi − s(s−1)

2 , we have

(s− 1)(n− s)

q
+

s(s− 1)

2
≤

s∑
i=1

xi,

which proves the lower bound on
∑s

i=1 xi.
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Upper bound:
∑s

i=1 xi ≤
s(n−s)

q + s(s−1)
2

Lemma

1. (Ionin-Shrikhande, 1993)
∑s

j=0(−1)jF
(s)
j · (z)s−j =

∏s
i=1(z − xi), where z is an

indeterminate.

2. (Gavrilyuk-S., 2024) N
∑s

j=0(−1)jF
(s)
j

(n)s−j

qs−j =
∏s

i=1(n− xi).

Eliminating
∏s

i=1(n− xi) by setting z = n, and using the upper bound on s-distinct Hamming
distance code:

N ≤
s∑

k=0

(n
k

)
(q − 1)k =: M,

we obtain:
s∑

j=0

(−1)jF
(s)
j (n)s−j ≤ M

s∑
j=0

(−1)jF
(s)
j

(n)s−j

qs−j
.

Substituting

F
(s)
j =

(n− s+ j − 1)j−1

qj−1

((s− 1

j − 1

)
F

(s)
1 −

((s− 1)
(s−1
j−1

)
−
(s−1

j

)
)(n− s)

q

)
into the above inequality and simplifying this, we have

s∑
i=1

xi ≤
s(n− s)

q
+

s(s− 1)

2
.
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Summary

▶ Orthogonal arrays;

▶ Construction by finite fields, linear codes, Hadamard matrices;

▶ Rao’s lower bound and tight orthogonal arrays;

▶ Extremal orthogonal arrays.

Thank you for your attention!

Sho Suda (National Defense Academy of Japan) Extremal orthogonal arrays March 13, 2024 23 / 23


