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Abel’s theorem

Let

f (x) =
∞∑
n=0

anx
n

be a power series with an ∈ R which converges for x ∈ (−1, 1). In
1826, Abel proved that if

∞∑
n=0

an = A,

then limx→1− f (x) exists and equals to A.

Is the converse true? No.

Eg. limx→1−
∑∞

n=0(−1)nxn = limx→1−
1

1+x , but
∑∞

n=0(−1)n does
not converge.
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A. Tauber (1897): Proved that if

lim
x→1−

∞∑
n=0

anx
n = A

and limn→∞ nan = 0, then

∞∑
n=0

an = A.

Wiener-Ikehara (1931): Obtained an asymptotic formula for the
partial sum of coefficients of a Dirichlet series

∑∞
n=1 ann

−s satisfying
certain conditions.
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The Wiener-Ikehara Tauberian Theorem

Let

G (s) =
∞∑
t=1

bt
ts

(bt ≥ 0)

be a Dirichlet series such that

G (s) is absolutely convergent for Re(s) > 1,

G (s) can be analytically continued to Re(s) ≥ 1, except for a simple
pole at s = 1 with residue R.

Then as x → ∞, ∑
t≤x

bt ∼ Rx .
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Higher order poles

Let

G (s) =
∞∑
t=1

bt
ts

(bt ≥ 0)

be a Dirichlet series such that

G (s) is absolutely convergent for Re(s) > 1,

G (s) can be analytically continued to Re(s) ≥ 1, except for a pole of
order k at s = 1.

Then, we have∑
t≤x

bt =
ck

(k − 1)!
x(log x)k−1 + O

(
x(log x)k−2

)
,

as x → ∞, where ck is the residue of (s − 1)k−1G (s) at s = 1.
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In general

Let

F (s) =
∞∑
t=1

at
ts
, at ∈ C,

be a Dirichlet series such that

1 F (s) is absolutely convergent for Re(s) > c , (c > 0)

2 F (s) can be analytically continued to Re(s) ≥ c, except for a pole of
order k at s = c ,

3 |at | ≤ bt , where bt ≥ 0 and G (s) =
∑∞

t=1
bt
ts satisfies conditions (1)

and (2) above.

Then, as x → ∞, we have∑
t≤x

at =
ck

c(k − 1)!
xc(log x)k−1 + O

(
xc(log x)k−2

)
,

where ck is the residue of (s − c)k−1F (s) at s = c .
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Prime Number Theorem from the W-I theorem

The Wiener-Ikehara theorem when applied to −ζ
′
(s)/ζ(s) yields the

Prime Number Theorem.

The logarithmic derivative of ζ(s), for Re(s) > 1, is represented by
the Dirichlet series

ζ
′
(s)

ζ(s)
= −

∞∑
n=1

Λ(n)

ns
.

The above Dirichlet series satisfies the hypothesis of the
Wiener-Ikehara Theorem with a simple pole of residue 1 at s = 1.
Applying the Tauberian theorem yields∑

n≤x

Λ(n) ∼ x .
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Towards the proof

Let F be a smooth compactly supported function on R and ηF be the
Fourier transform of F (t)et :

F (t)et =

∫
R
ηF (u)e

−iut du.

In particular,

F

(
log t

log x

)
=

∫
R
ηF (u)t

− 1+iu
log x du.

We have

|ηF (t)| ≪A
1

(1 + |t|)A
,

for any A > 0, as |t| → ∞.

Jagannath Sahoo (IIT Gandhinagar) The Wiener-Ikehara Tauberian theorem 8 / 19



Towards the proof

Let F be a smooth compactly supported function on R and ηF be the
Fourier transform of F (t)et :

F (t)et =

∫
R
ηF (u)e

−iut du.

In particular,

F

(
log t

log x

)
=

∫
R
ηF (u)t

− 1+iu
log x du.

We have

|ηF (t)| ≪A
1

(1 + |t|)A
,

for any A > 0, as |t| → ∞.

Jagannath Sahoo (IIT Gandhinagar) The Wiener-Ikehara Tauberian theorem 8 / 19



Preliminary lemma

Let ∫ (j)

F (t) dt :=

∫ ∞

tj=0

∫
tj−1≥tj

. . .

∫
t1≥t2

F (t1)dt1 . . . dtj .

We will require the identity∫
R
ηF (u)

1

(1 + iu)j
du =

∫ (j)

F (t) dt

=
1

(j − 1)!

∫ ∞

0
F (t)t j−1 dt.
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Proof of the W-I Theorem with higher order pole

In order to estimate
∑

t≤x bt , we will consider the related sum∑
t≤x

bt
t and then use partial summation.

In order to estimate the sum
∑

t≤x
bt
t , we consider the infinite series∑∞

t=1
bt
t , twisted by an appropriate smooth bump function F (t)

which approximates the indicator function 1[1,x].

More precisely, for some δ > 0 to be chosen later, we take a smooth
function F (t) supported on [−δ, 1 + δ] such that F (t) = 1 for
0 ≤ t ≤ 1.

Essentially ∑
t≤x

bt
t

≈
∞∑
t=1

bt
t
F

(
log t

log x

)
.
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Recalling F
(

log t
log x

)
=

∫
R ηF (u)t

− 1+iu
log x du, we have

∞∑
t=1

bt
t
F

(
log t

log x

)
=

∫
R
ηF (u)

∞∑
t=1

bt

t1+
1+iu
log x

du,

interchanging the order of summation and integration in the region of
absolute convergence of the Dirichlet series.

For s → 0+, we will use the Laurent series expansion:

G (1 + s) =
ck
sk

+
ck−1

sk−1
+ O

(
1

|s|k−2

)
,

where ci is the residue of (s − 1)i−1G (s) at s = 1.
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Fix ϵ ∈ (0, 1). Case 1: |u| < (log x)ϵ

The contribution to the integral∫
R
ηF (u)

∞∑
t=1

bt

t1+
1+iu
log x

du

from this region is

k∑
j=k−1

cj(log x)
j

∫
|u|<(log x)ϵ

ηF (u)

(1 + iu)j
du + O

(
(log x)k−2

∫
R

|ηF (u)|
|1 + iu|k−2

du

)
.

The error term is ≪ (log x)k−2 due to the rapid decay of ηF (u).
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Case 2:|u| ≥ (log x)ϵ

Here one cannot directly use the Laurent series expansion. But we have∣∣∣∣∣
∞∑
t=1

bt

t1+
1+iu
log x

∣∣∣∣∣ ≤
∞∑
t=1

bt

t1+
1

log x

≪ (log x)k ,

using the Laurent series expansion for G (1 + (log x)−1) as x → ∞.
The contribution to ∫

R
ηF (u)

∞∑
t=1

bt

t1+
1+iu
log x

du

is thus

≪ (log x)k
∫
|u|≥(log x)ϵ

ηF (u)du ≪A (log x)−A,

for any A > 0 since in this region we have

|ηF (u)| ≪A
1

(1 + |u|)3A
≪A (log x)−k−A 1

(1 + |u|)A
.
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Combining Cases

We have obtained

∞∑
t=1

bt
t
F

(
log t

log x

)
=

k∑
j=k−1

cj(log x)
j

∫
|u|<(log x)ϵ

ηF (u)

(1 + iu)j
du + O

(
(log x)k−2

)
.

One may replace the integral above by the full integral since∫
|u|≥(log x)ϵ

ηF (u)

(1 + iu)j
du ≪A (log x)−A,

by the rapid decay of ηF .
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Thus

∞∑
t=1

bt
t
F

(
log t

log x

)
=

k∑
j=k−1

cj(log x)
j

∫
R

ηF (u)

(1 + iu)j
du + O

(
(log x)k−2

)
.

Use the Preliminary lemma to move from ηF (u) back to the function
F (t). This yields

∞∑
t=1

bt
t
F

(
log t

log x

)
=

k∑
j=k−1

cj
(log x)j

(j − 1)!

∫ ∞

0
F (t)t j−1dt + O

(
(log x)k−2

)
.
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Recall that F (t) was a smooth bump function supported on
[−δ, 1 + δ]. Choose

0 < δ < log

(
⌊x⌋+ 1

x

)
(log x)−k .

With this choice of δ, we obtain∑
t≤x

bt
t

=
ck(log x)

k

k!
+

ck−1(log x)
k−1

(k − 1)!
+ O

(
(log x)k−2

)
.

Applying partial summation and integration by parts yields∑
t≤x

bt =
ck

(k − 1)!
x(log x)k−1 + O

(
x(log x)k−2

)
,

as needed.
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,

as needed.
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Concluding remarks

If G (s) has the Laurent series expansion

G (1 + s) =
ck
sk

+
ck−1

sk−1
+ · · ·+ c0 + Om

(
|s|m

)
,

as s → 0+, for some ci ∈ C and m ∈ N, then we obtain a saving of
(log x)m in the error term. More precisely, we obtain

∑
t≤x

b(t)

t
= ck

(log x)k

k!
+ ck−1

(log x)k−1

(k − 1)!
+ · · ·+ c0 + Om

(
1

(log x)m

)
.

By applying partial summation, one can derive

∑
t≤x

b(t) = x
k∑

j=1

(log x)k−j

(k − j)!
λk−j + Om

(
x

(log x)m

)
,

where λk−j =
∑j−1

i=0(−1)j−1−ick−i .
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