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Dynamics on shift spaces

• G finitely generated group

• A = {1, . . . , a}, where a � 2.

• ⌦ = AG
equipped with the product topology: compact and

Hausdor↵

• G acts on ⌦ via

�g (!)(h) = !(hg).

• Connection between group theoretical properties of G and dynamical

properties of this action?

• (E. Glasner, B.Weiss, 1997) G has Property (T) i↵ the set of

extreme points of the simplex of invariant measures is closed.
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Main result of this presentation

Definition
Let X be a compact metric space equipped with a continuous G -action.

We say that (G ,X ) is surjunctive if for every continuous � : X ! X

satisfying �(gx) = g�(x) for all g 2 G and x 2 X , if � is injective then it

is surjective.

G is surjunctive if the shift space action (AG ,G ) is surjunctive for all a.
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Question

source: Walter Gottschalk, Some general dynamical notions. Recent advances in

topological dynamics, proceedings of the conference held at Yale University, June

19-23 1972.
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Z is surjunctive: Proof I
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Gottschalk’s conjecture for residually finite groups

Definition
A group G is called residually finite if for every finite set T ✓ G , there

exists a finite quotient ⇡ : G ! F of G such that ⇡|S is injective.
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Z is surjunctive: Proof II

Definition
For a closed G -invariant subset

X ✓ AG
, define its entropy via

h(X ) = lim
n!1

1

n
log |Xn| = inf

1

n
log |Xn|.

where Xn ✓ A{0,...,n�1}
is the image of

X via

⇡(xk)k2Z = (xk)0kn�1.

The convergence follows from

|Xm+n|  |Xm||Xn| and Fekete’s lemma.
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Cayley graphs of finitely generated groups

Definition
Let G be a group generated by a finite symmetric set S . The Cayley

graph of G with respect to S , denoted by Cay(G , S) is the graph with

the vertex set G , with a directed edge from g to sg for each g 2 G and

s 2 S labeled with s.

• The graph metric on G is denoted by d .

• Ball of radius r centered at 1 is denoted by BS(r).
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Sofic groups

Definition
A finitely generated group G is sofic if for some finite symmetric finite set

S and every ✏ > 0 and r � 1 there exists a finite graph with the vertex

set V with (directed) edges labeled by S with a subset V0 ✓ V such that

• For every v 2 V0 the r -ball centered at v in V is isomorphic (as a

labeled graph) to BS(r).

• |V0| � (1� ✏)|V |.
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Examples of sofic groups

Ex 1: Residually finite groups Ex 2: amenable groups
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Sofic groups are surjunctive

Theorem (Gromov 1999, Weiss 2000)

Every sofic group is surjunctive.

sketch of the proof:

• Local functions and their properties

•
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claim subset UEVC3ro with theproperties

Blu.ro are pairwise disjoint
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Thank you!
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Thank you!
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