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Dynamics on shift spaces

e G finitely generated group Q= {,( G—%A} =2

e A={1,...,a}, where a > 2.

o K_)_iAG equipped with the product topology: compact and
Hausdorff

e G acts on £ via
g D

og(w)(h) = w(hg)e SL
e Connection between group theoretical properties of G and dynamical
properties of this action?

e (E. Glasner, B.Weiss, 1997) G has Property (T) iff the set of
extreme points of the simplex of invariant measures is closed.



Main result of this presentation

Definition
Let X be a compact metric space equipped with a continuous G-action.

We say that (G, X) is surjunctive if for every continuous ¢ : X — X
satisfying W(x) forall g € G and x € X, if ¢ is injective then it
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IS surjective.

G is surjunctive if the shift space action (A®, G) is surjunctive for all a.
\/ ___=_.



Question

Let P be a finite set with at least two elements, let P be provided with
its discrete topology, let T be an infinite discrete group, let X be the
cartesian power PT provided with its product topology, and let T act upon X

by left translation. Then (X, T) is called the left symbolic transformation

group over T to P. If T is the additive group Z of integers, then (X, T)
is the standard symbolic flow. In general, X is compact Hausdorff zero-
dimensional self-dense, and (X, T) is expansive. A presumably large project is
to correlate group properties of T with dynamical properties of (X, T). Here
are some recent results of Wayne Lawton [5, 6] in this context:
(1) T is profinite iff the set of periodic points of (X, T) is dense in X.
(2) Call T surjunctive in case every one-to-one endomorphism of (X, T) is onto
for all P. If T is locally finite or profinite or abelian, then T is surjunc-
tive. Also every subgroup of a surjunctive group is surjunctive.

No example of a non-surjunctive group seems to be known. If it could be
proved that every quotient group of a surjunctive group is surjunctive, then every
group would be surjunctive.

Professor Hedlund has pointed out that every symbolic flow is surjunctive [3].

source: Walter Gottschalk, Some general dynamical notions. Recent advances in
topological dynamics, proceedings of the conference held at Yale University, June

19-23 1972.
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Gottschalk’s conjecture for residually finite groups

Definition
A group G is called residually finite if for every finite set § C G, there

exists a finite quotient 7 : G — F of G such that 7|s is injective.
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Z is surjunctive: Proof Il

X clned ‘aumiomt oet
Definition (X))~ Q.'M—';, QD)U(,\] S’“So‘ .

For a closed z—invariant subset

XcAz—df' its ent ' : e

C e |n1e Its entropy V|a1 B Xt AG— Tunnr WX) <[o'84.
h(X) = lim —log|X,| = inf —log |X,]|.

PO = Jim, log Xal =i o1l kg€ o5 T 54
where & C A10--n=1} ig the image of Xn _ A?o, - n—:ﬁ -
X via — [

[ Xl < a'=) "(“'" Seaa WM
(X )kez = (Xk)o<k<n-1- W) = (af L Qo) (¥a | o (2™

< IOSA :
The convergence follows from
[ Ximan| < [Xm||Xn| and Fekete's lemma.
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Cayley graphs of finitely generated groups

Definition
Let G be a group generated by a finite symmetric set S. The Cayley

graph of G with respect to S, denoted by Cay(G, S) is the graph with
the vertex set G, with a directed edge from & to g for each g € G and

s € S labeled Wlth S.
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e The graph metric on G is denoted by d.
e Ball of radius r centered at 1 is denoted by Bs(r).

C\:Z xZ. C’\ = G-2. G= (a,b[o:;= B= >
_5.__)o-—go —Dde hﬂ.
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Sofic groups

Definition
A finitely generated group G is sofic if for some finite symmetric finite set

S and every € > 0 and r > 1 there exists a finite graph with the vertex
set V with (directed) edges labeled by S with a subset Vo C V such that

e For every v € Vo the r-ball centered at v in V' is |somorph|c (as a
labeled graph) to Bs(r).
o Vol > (1—¢)|V|.
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Examples of sofic groups

Ex 1: Residually finite groups Ex 2: amenable groups
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Sofic groups are surjunctive

Theorem (Gromov 1999, Weiss 2000)

Every sofic group is surjunctive.
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Thank youl
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