Sofic groups are surjunctive

Keivan Mallahi-Karai

online working seminar in ergodic theory
27.11.2023

Constructor University
Based on the paper Sofic groups and dynamical systems by Benjamin Weiss.

Dynamics on shift spaces

- \underline{G} finitely generated group

$$
\Omega=\{f: G \rightarrow A\} \quad G=\mathbb{Z}
$$

- $A=\{1, \ldots, a\}$, where $a \geq 2$.
- $\Omega=A^{G}$ equipped with the product topology: compact and Hausdorff
- G acts on Ω via

$$
\sigma_{\underline{g}}(\underline{\underline{\omega}})(h)=\omega(h \underline{\underline{g}}) \in \Omega
$$

- Connection between group theoretical properties of G and dynamical properties of this action?
- (E. Glasner, B.Weiss, 1997) G has Property (T) iff the set of extreme points of the simplex of invariant measures is closed.

Main result of this presentation

Definition

Let X be a compact metric space equipped with a continuous G-action. We say that (G, X) is surjunctive if for every continuous $\phi: X \rightarrow X$ satisfying $\phi(g x)=g \phi(x)$ for all $g \in G$ and $x \in X$, if ϕ is injective then it is surjective.
G is surjunctive if the shift space action $\left(\underline{\underline{A^{G}}}, G\right)$ is surjunctive for all a.

Question

> Let P be a finite set with at least two elements, let P be provided with its discrete topology, let T be an infinite discrete group, let X be the cartesian power P provided with its product topology, and let T act upon X by left translation. Then (X, T) is called the left symbolic transformation group over T to P. If T is the additive group \mathbb{Z} of integers, then (X, T) is the standard symbolic flow. In general, X is compact Hausdorff zerodimensional self-dense, and (X, T is expansive. A presumably large project is to correlate group properties of T with dynamical properties of (X, T). Here are some recent results of Wayne Lawton [5, 6$]$ in this context:
> (l) T is profinite iff the set of periodic points of (X, T) is dense in X. (2) Call T surjunctive in case every one-to-one endomorphism of (X, T) is onto for all P. If T is locally finite or profinite or abelian, then T is surjunctive. Also every subgroup of a surjunctive group is surjunctive.
> No example of a non-surjunctive group seems to be known. If it could be proved that every quotient group of a surjunctive group is surjunctive, then every group would be surjunctive.
> Professor Hedlund has pointed out that every symbolic flow is surjunctive [3].
source: Walter Gottschalk, Some general dynamical notions. Recent advances in topological dynamics, proceedings of the conference held at Yale University, June 19-23 1972.
\mathbb{Z} is surjunctive: Proof I

$$
A=\{1, \ldots, a\}
$$

$\varphi: A^{\mathbb{Z}} \rightarrow A^{\mathbb{2}}$ continus. \mathbb{Z}-inequitant
φ injective $\Rightarrow \varphi$ surjective

$$
\begin{aligned}
& p \geqslant 1 \\
& X_{p}=\left\{\omega \in A^{\mathbb{Z}}: \omega(n+p)=\omega(n) \quad \forall n \in \mathbb{Z}\right\} \\
& \left|x_{p}\right|=a^{p}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi\left(x_{p}\right) \equiv x_{p} \quad \varphi \text { ingective } \stackrel{x_{p} \text { tion }}{\Rightarrow} \varphi \text { is surjiction } \\
& \operatorname{Im}(\varphi) \geq x_{p} \quad \forall p \\
& \text { - } \bar{\bigcup}_{P \geqslant 1} X_{p}=A^{\mathbb{Z}}[-]\left[E_{N_{0}}\right][\text {...... }]
\end{aligned}
$$

$\operatorname{Im} \varphi=A^{\mathbb{Z}}$.

Definition
A group G is called residually finite if for every finite set $S \subseteq G$, there exists a finite quotient $\pi: G \rightarrow F$ of G such that $\left.\pi\right|_{s}$ is injective.
E.g. $\mathbb{Z} S \subset \mathbb{Q}$ finite N loge integer $\mathbb{Z} \xrightarrow{\pi_{N}} \mathbb{\mathbb { Q }} / N \mathbb{Q}$ $\left.\pi_{N}\right|_{S}$ is infective $\Rightarrow \mathbb{Z}$ is residually finite.
G resizally finite
N finite in lex subgroup of G

$$
F=G / N \quad G \xrightarrow{\pi_{N}} G / N
$$

$$
\begin{aligned}
& X_{N}=\left\{\omega \in A^{G} \mid \omega(g n)=\omega(g) \quad \forall n \in N\right\} \\
& \left|X_{N}\right|=|A| F \mid \quad \varphi\left(X_{N}\right) \subset X_{N} \quad \text { infective } \Rightarrow \varphi\left(X_{N}\right)=x_{N} \\
& \operatorname{Im} \varphi \supseteq \bigcup_{\substack{ \\
N \Delta G_{N} \\
X_{N} \\
\text { indoor }}}^{\left.S \subseteq G \quad S=2 s_{1} \ldots, g_{k}\right\}} \begin{array}{l}
\omega\left(g_{1}\right)=a_{1}, \ldots, \omega\left(g_{\omega}\right)=a_{k} .
\end{array}
\end{aligned}
$$

Definition
For a closed -invariant subset
$X \subseteq A^{\mathbb{T}}$, define its entropy via

$$
h(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|X_{n}\right|=\inf _{n \geqslant 1} \frac{1}{n} \log \left|X_{n}\right| .
$$

where $X_{n} \subseteq \underline{A^{\{0, \ldots, n-1\}}}$ is the image of X via

$$
\pi\left(x_{k}\right)_{k \in \mathbb{Z}}=\left(x_{k}\right)_{0 \leq k \leq n-1}
$$

The convergence follows from $\left|X_{m+n}\right| \leq\left|X_{m}\right|\left|X_{n}\right|$ and Fekete's lemma.
X closed invariant set

$$
h(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|x_{n}\right| \leq \operatorname{dg} a .
$$

If $x \neq A^{G}$ Tens $h(x)<\log a$. $X \neq \theta^{G} \Rightarrow \exists n$ st.

$$
x_{n} \neq A^{\{0, \ldots, n-1\}}
$$

$\left|x_{m}\right|<a^{m}-1$ for some m

$$
h(x)=\inf _{n} \frac{1}{n} \log \left|x_{n}\right| \operatorname{clog}_{m}\left(a^{m}-1\right)
$$ $<\log a$.

$$
\begin{aligned}
& \varphi: A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}} \quad \begin{array}{c}
\text { contims } \\
\text { injictive }
\end{array} \\
& X=\varphi\left(A^{\mathbb{Z}}\right) \subset A^{\mathbb{Z}}
\end{aligned}
$$

- X compact, $\psi: \underline{X} \rightarrow A^{\mathbb{Z}}$ bijection continuos.
$\omega \in X \sim \sim D \quad \psi(\omega)(0)$
$\exists N$ ruch that $\psi(\omega)(0)$ is deteminel ly $\omega \|_{E N, N D}$ so $\psi(\omega)(0)=\psi_{\text {loc }}\left(\omega_{[N, N]}\right)$.

$$
\left.\mathbb{Z} \text {-inuaniance } \quad \underset{(\omega)(n)}{\Psi(l o c}=\Psi_{[-N+n, N+n]}\right)
$$

$$
\Psi(\omega)(n)=\left(\sigma_{n} \omega\right)(0) \quad[0, n)
$$

$$
\begin{aligned}
& X=\varphi\left(A^{\mathbb{Z}}\right) \quad \pi_{i} A^{\mathbb{Z}} \longrightarrow A^{\{0 \cdots n+2 N\}} \\
& \left|\pi_{n}(x)\right| \geqslant|A|^{n} . \\
& \omega=\left(\underset{\substack{\omega(0), \omega(1), \ldots, \omega(n+1),-\ldots a_{n-1}}}{\stackrel{a_{0} a_{1} \ldots}{\left|\pi_{n}(x)\right| \geqslant a^{n}}} \stackrel{\varphi}{\varphi(\omega) \in \underline{X}}\right. \\
& \ln (x)=\lim _{n \rightarrow \infty} \frac{1}{n+2 N} \log a^{n}=\log a
\end{aligned}
$$

Cayley graphs of finitely generated groups

Definition

Let G be a group generated by a finite symmetric set S. The Cayley graph of G with respect to S, denoted by $\operatorname{Cay}(G, S)$ is the graph with the vertex set G, with a directed edge from g to $s g$ for each $g \in G$ and $s \in S$ labeled $\overline{\text { with }} s$.

- The graph metric on G is denoted by d.
- Ball of radius r centered at 1 is denoted by $B_{S}(r)$.
$G=\mathbb{Z} \times \mathbb{Z}$

$$
G=F_{2}
$$

$G=\left\langle a, b \mid a^{3}=b^{2}=1\right\rangle$

Sofic groups

Definition

A finitely generated group G is sofic if for some finite symmetric finite set S and every $\epsilon \geq 0$ and $r \geq 1$ there exists a finite graph with the vertex set V with (directed) edges labeled by S with a subset $V_{0} \subseteq V$ such that

- For every $v \in V_{0}$ the r-ball centered at v in V is isomorphic (as a labeled graph) to $B_{S}(r)$.
- $\left|V_{0}\right| \geq(1-\epsilon)|V|$.

Examples of sofic groups

Ex 1: Residually finite groups

Ex 2: amenable groups

Sofic groups are surjunctive

Theorem (Gromov 1999, Weiss 2000)
Every sofic group is surjunctive.

$$
\begin{aligned}
& \varphi: A^{G} \longrightarrow A^{G} \quad X=\varphi\left(A^{G}\right) \\
& \psi: X \rightarrow A^{G} \\
& \psi^{\psi} \varphi=i d_{A}{ } . \\
& \exists \varphi_{\text {loc }}: A \xrightarrow[B(r 0)]{B(0)} A \quad \varphi(\omega)(e)=\varphi_{\text {loc }}\left(\left.\omega\right|_{B(0)}\right) \text {. } \\
& \exists \Psi_{\text {loc }}: X_{c_{0}} C A \xrightarrow{B(10)} A_{n \geqslant 1} \Psi(\omega)(e)=\psi_{l o c}\left(\left.\omega\right|_{B\left(r_{0}\right)}\right) \text {. }
\end{aligned}
$$

Ret Notation: $V\left(n r_{0}\right)=\left\{v \in V \mid B_{n r_{0}}(v) \cong B\left(n c_{0}\right)\right\}$
ske of the-proof:

$$
\begin{aligned}
& \varphi_{n}: A^{V\left(n r_{0}\right)} \longrightarrow A^{V\left((n+1) r_{0}\right) .} \\
& w \in A^{V\left(n r_{0}\right)} \\
& \text { we want to define } \\
& v \in V\left((n+1) r_{0}\right) . \varphi_{n}(w)(v)=\varphi_{l o c}\left(\left.\omega\right|_{\frac{B\left(v, r_{0}\right)}{22},} ^{B\left(r_{0}\right)}\right. \\
& B_{r_{0}}^{\mathbb{U}}(v) \subseteq V\left(n s_{0}\right) .
\end{aligned}
$$

ψ_{n} defined is a similar way using $\psi_{\text {bloc }}$.

$$
\begin{aligned}
& A^{V\left(n r_{0}\right)} \xrightarrow{\varphi_{n}} A^{V\left(\left(n+1 r_{0}\right)\right.} \xrightarrow{\psi_{n+1}} A^{V\left((n+2) r_{0}\right)} \text {. } \\
& \psi_{0} \varphi=i d \Rightarrow \quad \psi_{n+1} \circ \varphi_{n}(\omega)=\left.\omega\right|_{V((n+2)(0)} . \\
& n=1 \\
& \mathrm{~A}^{\mathrm{v}(n(0)} \\
& \text { in } \\
& v(n(0) \text {. }
\end{aligned}
$$

Upper,

$$
z=\varphi_{1}(\underbrace{V\left(T_{0}\right)}) \subseteq A^{V\left(2 \tau_{0}\right)}
$$

$$
\begin{aligned}
& \psi_{2}(z)=\psi_{2}\left(\varphi_{1}\left(A^{V((0))}\right)\right)=A^{V(3(0)} \\
& \Rightarrow|z| \geqslant\left|\psi_{2}(z)\right|=|A|^{\mid V(3(0) \mid}
\end{aligned}
$$

Lower
bound.

Claim \exists subet $U \subseteq V(3(0)$ with te propertes:

- $\left\{B(u,(0)\}_{u \in U}\right.$ are pairwise disjoint

$$
\begin{aligned}
& \quad|U| \geqslant \frac{\mid V(3(0) \mid}{|\overline{B(2(0) \mid}|} \\
& z=\varphi_{1}\left(A^{V\left(r_{0}\right)}\right)
\end{aligned}
$$

 $\varphi\left(A^{G}\right)$ is a proger cleed rubet of A^{G}.

Jro such that

$$
\begin{aligned}
& \pi_{B\left(r_{0}\right)}\left(\varphi\left(A^{G}\right)\right) \subsetneq A^{B\left(r_{0}\right)} . \\
& \left|\varphi \pi_{B(10)}\left(\varphi\left(A^{G}\right)\right)\right| \leq \mid A^{|B(0)|}-1 . \\
& |\mathrm{V}(310)| \\
& |A| \leq|Z| \leq\left(|A|^{B\left(r_{0}\right)}-1\right)^{|U|} \cdot|A|^{\mid V(2(0) \mid}-|U|| | B\left(r_{0} \mid\right. \\
& |A|=a \\
& \Rightarrow \quad a^{\mid V(3(0) \mid} \leq\left(1-\frac{1}{a^{\left|B\left(c_{0}\right)\right|}}\right)^{|U|} \cdot a^{|V|} \\
& \frac{|V(310)|-|V|}{a{ }^{\mid V(310)}} \leq\left(1-\frac{1}{|a|^{|B(0)|}}\right)^{\frac{|U|}{|B(300)|}}
\end{aligned}
$$

$$
\begin{aligned}
& 1-\frac{\sqrt{1}}{\mid v(3010)} \leq\left(1-\frac{1}{|a|^{\mid B(5(0) \mid}}\right)^{\frac{1}{\mid B(2(0) \mid}} \\
& a^{1-(1+\varepsilon)} \\
& a^{\varepsilon} \leq C \quad \frac{\text { fike }}{} \text { only depeds on ro } \\
& a^{\varepsilon} \geqslant C \quad \forall \varepsilon
\end{aligned}
$$

Thank you!

