Prime Number Error Terms

Nathan Ng

Comparative Prime Number Theory Symposium CRG: L-functions in Analytic Number Theory University of British Columbia

June 17, 2024

Summatory functions

$$
\psi(x)=\sum_{n \leq x} \Lambda(n), \quad M(x)=\sum_{n \leq x} \mu(n), \quad L(x)=\sum_{n \leq x} \lambda(n)
$$

- Von Koch (1905) RH implies

$$
\frac{\psi(x)-x}{\sqrt{x}}=O\left(\log ^{2} x\right)
$$

- Littlewood (1914)

$$
\frac{\psi(x)-x}{\sqrt{x}}=\Omega_{ \pm}(\log \log \log x)
$$

- Bui-Florea (2023) RH implies

$$
\frac{M(x)}{\sqrt{x}}=O\left(\exp \left(\sqrt{\log x}(\log \log x)^{\frac{7}{8}+\varepsilon}\right)\right.
$$

- Hurst (2018)

$$
\limsup _{x \rightarrow \infty} \frac{M(x)}{\sqrt{x}}>1.826054 \text { and } \liminf _{x \rightarrow \infty} \frac{M(x)}{\sqrt{x}}<-1.837625
$$

Error term Conjectures

Conjecture (Montgomery, 1980)

$$
{\overline{\varliminf_{\mathrm{m}}}}_{x \rightarrow \infty} \frac{\psi(x)-x}{\sqrt{x}(\log \log \log x)^{2}}= \pm \frac{1}{2 \pi} .
$$

Conjecture (Ng, 2012)

$$
\begin{equation*}
\overline{\lim }_{x \rightarrow \infty} \frac{M(x)}{\sqrt{x}(\log \log \log x)^{\frac{5}{4}}}= \pm \frac{8 a}{5} . \tag{1}
\end{equation*}
$$

- $a=\frac{1}{\sqrt{\pi}} e^{3 \zeta^{\prime}(-1)-\frac{11}{12} \log 2} \Pi_{p}\left(\left(1-p^{-1}\right)^{\frac{1}{4}} \sum_{k=0}^{\infty}\left(\frac{\Gamma\left(k-\frac{1}{2}\right)}{k!\Gamma\left(-\frac{1}{2}\right)}\right)^{2} p^{-k}\right)$.
- $a=0.16712 \ldots$ arises from a conjecture of Hughes, Keating, O'Connell.
- Gonek (1990's) conjectured (1) with an unspecified constant.

Linear Independence

Conjecture (LI: Linear Independence, Wintner 1935)

The positive ordinates of the zeros of the Riemann zeta function are linearly independent over the rational numbers.

Conjecture (ELI: Effective Linear Independence)
Let $\{\gamma\}$ denote the set of the ordinates of the non-trivial zeros of the Riemann zeta function. For every $\varepsilon>0$ there exists a positive constant C_{ε} such that for all real numbers $T \geq 2$ we have

$$
\left|\sum_{0<\gamma \leq T} \ell_{\gamma} \gamma\right| \geq C_{\varepsilon} e^{-T^{1+\varepsilon}},
$$

where the ℓ_{γ} are integers, not all zero, such that $\left|\ell_{\gamma}\right| \leq N(T)$, and $N(T)$ is the number of non-trivial zeros of $\zeta(s)$ with imaginary part in $(0, T]$.

- Damien Roy (2018), Lamzouri (2023).

Omega results for error terms

Theorem (Lamzouri, 2023)
Assume ELI. Then we have

$$
\limsup _{x \rightarrow \infty} \frac{\psi(x)-x}{\sqrt{x}(\log \log \log x)^{2}} \geq \frac{1}{2 \pi} \text { and } \liminf _{x \rightarrow \infty} \frac{\psi(x)-x}{\sqrt{x}(\log \log \log x)^{2}} \leq-\frac{1}{2 \pi} .
$$

Theorem (Lamzouri, 2023)
Assume ELI,

$$
\sum_{0<\gamma<T} \frac{1}{\left|\zeta^{\prime}(\rho)\right|} \ll T(\log T)^{1 / 4}, \quad \text { and } \sum_{0<\gamma<T} \frac{1}{\left|\zeta^{\prime}(\rho)\right|^{2}} \ll T^{1.267}
$$

Then we have

$$
M(x)=\Omega_{ \pm}\left(\sqrt{x}(\log \log \log x)^{5 / 4}\right) .
$$

Explicit formulae and random sums

- If $\sum_{0<\gamma<T} \frac{1}{\left|\zeta^{\prime}(\rho)\right|^{2}} \ll T^{1.999}$, then

$$
\frac{M(x)}{\sqrt{x}}=2 \mathfrak{R e}\left(\sum_{0<\gamma \leq x^{2}} \frac{x^{i \gamma}}{\rho \zeta^{\prime}(\rho)}\right)+O(1) \text { for } 2 \leq x \leq x .
$$

- Variable change $x=e^{t}$

$$
\frac{M\left(e^{t}\right)}{\sqrt{e^{t}}} \sim 2 \mathfrak{R e}\left(\sum_{0<\gamma \leq x^{2}} \frac{e^{t i \gamma}}{\rho \zeta^{\prime}(\rho)}\right)=2 \mathfrak{R e}\left(\sum_{0<\gamma \leq x^{2}} \frac{e^{t i \gamma+i \beta_{\gamma}}}{\left|\rho \zeta^{\prime}(\rho)\right|}\right) .
$$

- If LI is true, Kronecker-Weyl theorem suggests sum behaves like the random sum

$$
\mathbf{X}(\underline{\theta})=2 \mathfrak{R e}\left(\sum_{0<\gamma \leq x^{2}} \frac{e^{2 \pi i \theta_{\gamma}}}{\left|\rho \zeta^{\prime}(\rho)\right|}\right)
$$

where $\underline{\theta}=\left(\theta_{\gamma_{1}}, \theta_{\gamma_{2}}, \ldots\right) \in \mathbb{T}^{N}$ and $N \in \mathbb{N}$.

Explicit formula and general sums over zeros
Let

$$
\Phi_{X, \mathrm{r}}(x):=\mathfrak{\Re e}\left(\sum_{0<\gamma \leq x} x^{i \gamma} r_{\gamma}\right)
$$

where $\mathbf{r}=\left\{r_{\gamma}\right\}_{\gamma>0}$ is a complex sequence satisfying:
A1: There exist $\alpha_{+}, \alpha_{-}, A>0$ such that

$$
\alpha_{-}(\log T)^{A} \leq \sum_{0<\gamma \leq T}\left|r_{\gamma}\right| \leq \alpha_{+}(\log T)^{A} \text { as } T \rightarrow \infty .
$$

A2:

$$
\sum_{0<\gamma \leq T} \gamma\left|r_{\gamma}\right|=o\left(T(\log T)^{A}\right)
$$

A3:

$$
\sum_{0<\gamma \leq T} \gamma^{2}\left|r_{\gamma}\right|^{2} \ll T^{\theta} \text { where } \theta<1.999
$$

- $\frac{\psi(x)-x}{\sqrt{x}} \approx \Phi_{x, r}(x)$ when $r_{\gamma}=\frac{1}{\rho}$.
- $\frac{M(x)}{\sqrt{x}} \approx \Phi_{X, r}(x)$ when $r_{\gamma}=\frac{1}{\rho \zeta^{\prime}(\rho)}$.
- $\frac{L(x)}{\sqrt{x}} \approx \Phi_{x, r}(x)$ when $r_{\gamma}=\frac{\zeta(2 \rho)}{\rho \zeta^{\prime}(\rho)}$.

General Theorem 1: $\Phi_{X, \mathbf{r}}(x):=\mathfrak{R e}\left(\sum_{0<\gamma \leq x} x^{i \gamma} r_{\gamma}\right)$

Theorem (Lamzouri, 2023)
Assume ELI. Let $\left\{r_{\gamma}\right\}_{\gamma>0}$ be a sequence of complex numbers satisfying A1, A2, A3'. Let X be large. There exist positive constants C_{1} and C_{2} such that

$$
\max _{x \in[2, X]} \Phi_{x^{2}, r}(x) \geq C_{1}(\log \log \log X)^{A} .
$$

and

$$
\min _{x \in[2, x]} \Phi_{x^{2}, r}(x) \leq-C_{2}(\log \log \log X)^{A} .
$$

- A1: $\sum_{0<\gamma \leq T}\left|r_{\gamma}\right| \asymp(\log T)^{A}$
- A2: $\sum_{0<\gamma \leq T} \gamma\left|r_{\gamma}\right|=o\left(T(\log T)^{A}\right)$
- A3': $\sum_{0<\gamma \leq T} \gamma^{2}\left|r_{\gamma}\right|^{2} \ll T^{\theta}$ where $\theta<1.267$

General Theorem 2: $\Phi_{X, \mathbf{r}}(x):=\mathfrak{R e}\left(\sum_{0<\gamma \leq X} x^{i \gamma} r_{\gamma}\right)$

Theorem (Ng, 2024)
Assume ELI. Let $\left\{r_{\gamma}\right\}_{\gamma>0}$ be a sequence of complex numbers satisfying A1, A2, A3. Let X be large. Then

$$
\max _{x \in[2, X]} \Phi_{X^{2}, r}(x) \geq \alpha_{-}(\log \log \log X)^{A}
$$

and

$$
\min _{x \in[2, x]} \Phi_{X^{2}}(x) \leq-\alpha_{-}(\log \log \log X)^{A}
$$

- A1: $\alpha_{-}(\log T)^{A} \leq \sum_{0<\gamma \leq T}\left|r_{\gamma}\right| \leq \alpha_{+}(\log T)^{A}$
- A2: $\sum_{0<\gamma \leq T} \gamma\left|r_{\gamma}\right|=o\left(T(\log T)^{A}\right)$
- A3: $\sum_{0<\gamma \leq T} \gamma^{2}\left|r_{\gamma}\right|^{2} \ll T^{\theta}$ where $\theta<2$

Remarks: (i) Minor modifications of Lamzouri's result. Better lower bound for $I_{0}(t)$ and adjustment of various parameters in proof.
(ii) Lamzouri had unspecified constants C_{1}, C_{2} instead of $\pm \alpha_{-}$.
(iii) Weakened condition in A3' from $\theta<1.267$ to $\theta<2$ using idea of Meng.

Application to $M(x)$

Theorem (Ng, 2024)
Assume ELI,

$$
\sum_{0<\gamma<T} \frac{1}{\left|\zeta^{\prime}(\rho)\right|} \sim a T(\log T)^{1 / 4}, \quad \text { and } \sum_{0<\gamma<T} \frac{1}{\left|\zeta^{\prime}(\rho)\right|^{2}} \ll T^{1.999}
$$

Then we have

$$
\limsup _{x \rightarrow \infty} \frac{M(x)}{\sqrt{x}(\log \log \log x)^{\frac{5}{4}}} \geq \frac{8 a}{5} \text { and } \liminf _{x \rightarrow \infty} \frac{M(x)}{\sqrt{x}(\log \log \log x)^{2}} \leq-\frac{8 a}{5}
$$

- Apply previous theorem with $r_{\gamma}=\frac{1}{\rho \zeta^{\prime}(\rho)}$.
- $\frac{8}{5}=\frac{4}{5} \cdot 2 \quad \frac{4}{5}$ partial summation, 2 zero symmetry.
- Weak Mertens Conjecture $\Longrightarrow \sum_{0<\gamma<T} \frac{1}{\left|\zeta^{\prime}(\rho)\right|^{2}}=o\left(T^{2}\right)$
- Bui-Florea-Milinovich. RH $\Longrightarrow \sum_{\substack{0<\gamma<T \\ \gamma \in S}} \frac{1}{\left|\zeta^{\prime}(\rho)\right|^{2}}=O\left(T^{1.51}\right)$ for certain S.

Application to $L(x)=\sum_{n \leq x} \lambda(n)$

Theorem (Ng, 2024)
Assume ELI,

$$
\sum_{0<\gamma<T} \frac{|\zeta(2 \rho)|}{\left|\zeta^{\prime}(\rho)\right|} \sim b T(\log T)^{1 / 4}, \quad \text { and } \sum_{0<\gamma<T} \frac{1}{\left|\zeta^{\prime}(\rho)\right|^{2}} \ll T^{1.999}
$$

Then we have
$\limsup _{x \rightarrow \infty} \frac{L(x)}{\sqrt{x}(\log \log \log x)^{\frac{5}{4}}} \geq \frac{8 b}{5}$ and $\liminf _{x \rightarrow \infty} \frac{L(x)}{\sqrt{x}(\log \log \log x)^{2}} \leq-\frac{8 b}{5}$

- Apply previous theorem with $r_{\gamma}=\frac{\zeta(2 \rho)}{\rho \zeta^{\prime}(\rho)}$.

Conjecture (Akbary, Ng, Yang Li, 2012)

$$
b=a \cdot \sum_{n=1}^{\infty} \frac{d_{\frac{1}{2}}(n)^{2}}{n^{2}}
$$

Discrete moment conjectures

Conjecture (Hughes, Keating, O'Connell, 2000)
For $0 \leq s<3$,

$$
\sum_{0<\gamma_{n}<T} \frac{1}{\left|\zeta^{\prime}(\rho)\right|^{s}} \sim \frac{G^{2}\left(2-\frac{s}{2}\right)}{G(3-s)} a\left(-\frac{s}{2}\right) \frac{T}{2 \pi}\left(\log \frac{T}{2 \pi}\right)^{\left(\frac{s}{2}-1\right)^{2}}
$$

where G is Barnes' function, $a(x)=\prod_{\rho}\left(1-\frac{1}{p}\right)^{x^{2}} \sum_{m=0}^{\infty}\left(\frac{\Gamma(m+x)}{m!\Gamma(x)}\right)^{2} p^{-m}$.
Conjecture (Akbary, Ng, Yang Li, 2012)
For $0 \leq s<3$,

$$
\sum_{0 \leq \gamma \leq T}\left|\frac{\zeta(2 \rho)}{\zeta^{\prime}(\rho)}\right|^{s} \sim \frac{G^{2}\left(2-\frac{s}{2}\right)}{G(3-s)} a\left(-\frac{s}{2}\right)\left(\sum_{n=1}^{\infty} \frac{d_{s / 2}(n)}{n^{2}}\right) \frac{T}{2 \pi}\left(\log \frac{T}{2 \pi}\right)^{\left(\frac{s}{2}-1\right)^{2}}
$$

where $d_{k}(\cdot)$ is the k-th divisor function.

$$
\sum_{0 \leq \gamma \leq T}\left|\frac{\zeta(2 \rho)}{\zeta^{\prime}(\rho)}\right| \sim b T(\log T)^{\frac{1}{4}} \text { and } \sum_{0 \leq \gamma_{n} \leq T}\left|\frac{\zeta(2 \rho)}{\zeta^{\prime}(\rho)}\right|^{2} \sim \frac{T}{2 \pi}
$$

A general conjecture

Let φ be real-valued with an "explicit formula"

$$
\varphi(t)=c_{0}+2 \mathfrak{R e} \sum_{0<\gamma_{n}<T} r_{\gamma_{n}} e^{i \gamma_{n} t}+\mathcal{E}(t, T)
$$

where $c_{0} \in \mathbb{R}, \mathcal{E}(t, T)$ satisfies a certain mean square bound, and

$$
\sum_{0<\gamma_{n} \leq T} 2\left|r_{\gamma_{n}}\right| \sim \alpha(\log T)^{\beta}
$$

Conjecture (Akbary, Ng, Shahabi, 2012)

$$
\limsup _{x \rightarrow \infty} \frac{\varphi(\log x)}{(\log \log \log x)^{\beta}}=\alpha \text { and } \liminf _{x \rightarrow \infty} \frac{\varphi(\log x)}{(\log \log \log x)^{\beta}}=-\alpha
$$

$\varphi(t)$	r_{γ}	$\sum_{0<\gamma<T} 2 r_{\gamma}$	α	β
$\frac{\left.\psi\left(e^{t}\right)-e^{t}\right)}{e^{t / 2}}$	$\frac{1}{\rho}$	$\frac{1}{2 \pi}(\log T)^{2}$	$\frac{1}{2 \pi}$	2
$\frac{M\left(e^{t}\right)}{e^{t / 2}}$	$\frac{1}{\rho \zeta^{\prime}(\rho)}$	$\frac{8 a}{5}(\log T)^{\frac{5}{4}}$	$\frac{8 a}{5}$	$\frac{5}{4}$
$\frac{L\left(e^{t}\right)}{e^{t / 2}}$	$\frac{\zeta(2(\rho)}{\rho \zeta^{\prime}(\rho)}$	$\frac{8 b}{5}(\log T)^{\frac{5}{4}}$	$\frac{8 b}{5}$	$\frac{5}{4}$

Random sums and large deviations

Let $\mathbf{r}=\left\{r_{\gamma_{n}}\right\}_{n=1}^{\infty}$ and consider the associated random sum

$$
\mathbf{X}_{\mathbf{r}}=2 \sum_{n=1}^{\infty} r_{\gamma_{n}} \cos \left(2 \pi \theta_{n}\right)
$$

where $\theta_{n} \in[0,1]$ are IID random variables. Assume $\sum_{0<\gamma_{n} \leq T} 2\left|r_{\gamma_{n}}\right| \sim \alpha(\log T)^{\beta}$ and 4 other conditions on $r_{\gamma_{n}}, \gamma_{n}$. ($r_{\gamma_{n}}$ NOT NECESSARILY DECREASING.)
Theorem (Akbary, Ng, Majid Shahabi, 2012, unpublished)
Let $\varepsilon>0$. Then for $V \geq V_{\varepsilon}$, we have

$$
\exp \left(-\exp \left(\left(\alpha^{\frac{1}{\beta}}+\varepsilon\right) V^{\frac{1}{\beta}}\right)\right) \leq P\left(\mathbf{X}_{\mathrm{r}} \geq V\right) \leq \exp \left(-\exp \left(\left(\alpha^{\frac{1}{\beta}}-\varepsilon\right) V^{\frac{1}{\beta}}\right)\right)
$$

- Upper bound: Montgomery, Odlyzko (Acta. Arith., 1988), Theorem 2 (Chernoff's inequality).
- Lower bound: Montgomery (Queen's Conf., 1980), Sec. 3, Theorem 1.
- Shahabi's M.Sc. thesis has more precise results for $P\left(\mathbf{X}_{r} \geq V\right)$ similar to Granville-Lamzouri (2021).
- Theorem shows why we don't expect to improve the lower bounds in omega theorems.

Lamzouri's argument

1. Let $F(t, T)=\sum_{0<\gamma \leq T} \cos \left(\gamma t+\beta_{\gamma}\right)\left|r_{\gamma}\right|$.
2. For X large show there exists $t \in[1, X]$.

$$
F\left(t, e^{2 X}\right)=\sum_{0<\gamma \leq e^{2 X}} \cos \left(\gamma t+\beta_{\gamma}\right)\left|r_{\gamma}\right| \geq\left(\alpha_{-}-\varepsilon\right)(\log \log X)^{2}
$$

Variable change $e^{X} \rightarrow X, t=\log x$ establishes Theorem.
3. ELI implies

$$
\begin{equation*}
\frac{1}{X} \int_{1}^{X} \exp (s F(t, T)) d t \sim \mathbb{E}\left(\exp \left(s \sum_{0<\gamma \leq T}\left|r_{\gamma}\right| \cos \left(\theta_{\gamma}\right)\right)\right) \tag{2}
\end{equation*}
$$

for $T=(\log X)^{1-\varepsilon}$ (random moment generating function).
4. Probability ideas show RHS is large. Independence, bounds for I_{0} Bessel functions, and insert lower bound for $\sum_{0<\gamma \leq T}\left|r_{\gamma}\right|$.
5. Deduce from (3) that

$$
F(t, T) \geq\left(\alpha_{-}-\varepsilon^{\prime}\right)(\log T)^{A}
$$

for many values of $t \in[1, X]$ for $T=(\log X)^{1-\varepsilon}$.

Lamzouri's argument cont'd

6. Use a smoothing to relate $F\left(t,(\log X)^{1-\varepsilon}\right)$ to an average of $F(t+u, X)$ where $|u| \leq(\log X)^{A}$.
7. Show that $F\left(t+u, e^{2 X}\right)-F(t+u, X)$ is small on average for $t \in[1, X]$. This allows one to obtain large values of $F\left(t+u, e^{2 X}\right)$ as desired. Requires following lemma.

Lemma (Ng, 2024)
Let $\left\{r_{\gamma}\right\}_{\gamma>0}$ be a sequence of complex numbers satisfying A3:

$$
\sum_{0<\gamma \leq T} \gamma^{2}\left|r_{\gamma}\right|^{2} \ll T^{\theta} \text { where } \theta<2
$$

There exists a positive constant $\alpha=\alpha(\theta)$, such that for all $X_{2}>X_{1}>1$ we have

$$
\sum_{x_{1}<\gamma_{1}, \gamma_{2} \leq x_{2}}\left|r_{\gamma_{1}} r_{\gamma_{2}}\right| \min \left(1, \frac{1}{\left|\gamma_{1}-\gamma_{2}\right|}\right) \ll X_{1}^{-\alpha}
$$

- Variant of a lemma of Akbary, Ng, Shahabi (2014) using an idea of Meng (2017).

References

- A. Akbary, N. Ng, and M. Shahabi, Limiting distributions of the classical error terms of prime number theory, QJM, 2014.
- A. Akbary, N. Ng, and M. Shahabi, Error terms in prime number theory and large deviations of sums of independent random variables, preprint.
- A. Granville, Y. Lamzouri, Large deviations of sums of random variables. Lith. Math. J., 2021.
- C. P. Hughes, J. P. Keating and N. O'Connell, Random matrix theory and the derivative of the Riemann zeta function. Proc. Roy. Soc. London Ser. A, 2000
- Y. Lamzouri, An effective Linear Independence conjecture for the zeros of the Riemann zeta function and applications, https://arxiv.org/abs/2311.04860, 2023.
- X. Meng, The distribution of k-free numbers and the derivative of the Riemann zeta-function, MPCPS, 2017.
- W. R. Monach, Numerical investigation of several problems in number theory, Ph. D. Thesis, University of Michigan, 1980.
- H. L. Montgomery, The zeta function and prime numbers, Proceedings of the Queen's Number Theory Conference, 1979.
- H. L. Montgomery and A. M. Odlyzko, Large deviations of sums of independent random variables, Acta Arith., 1988.
- N. Ng, The summatory function of the Möbius function, PLMS, 2004.
- Majid Shahabi, The distribution of the classical error terms in prime number theory, Master's thesis, University of Lethbridge, 2012.

