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Moments of real Dirichlet L-functions

We will study the moments ∑∗

d≤X

L(1/2, χd)
k ,

where the sum runs over positive fundamental discriminants and χd =
(
d
·
)
.

Jutila (1981): k = 1 with power savings error, leading-order term for k = 2.

Soundararajan (2000): k = 2, 3 with power-saving error term.

Shen (2021): Leading order term for k = 4 under GRH (based on work of
Soundararajan and Young).

Shen, Stucky (2024): Several leading order terms for k = 4 unconditionally (based
on work of X. Li).
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Martin Čech (Charles University) Moments of real Dirichlet L-functions and MDS October 23, 2024 2 / 35



Conjectures

Keating, Snaith (2000): conjectured the asymptotic formula∑∗

d≤X

L(1/2, χd)
k ∼ ckX (logX )k(k+1)/2

with explicit constants ck .

Conrey, Farmer, Keating, Rubinstein, Snaith (2005): came up with the recipe,
which predicted that∑∗

d≤X

L(1/2, χd)
k = XPk(logX ) + O(X 1−δ),

where Pk(x) is a (computable) polynomial of degree k(k + 1)/2. They considered
the shifted moments ∑∗

d≤X

L(s1, χd) . . . L(sk , χd),

where sj = 1/2 + αj ≈ 1
2 .
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Multiple Dirichlet series

Diaconu, Goldfeld, Hoffstein (2003):

Considered the multiple Dirichlet series associated to the k-th moment.

Showed that if it has a meromorphic continuation beyond a particular point,
then the conjecture of Keating and Snaith is true.

Computed the third moment with an improved error term.

Predicted a secondary term of size X 3/4 for the third moment (proved by
Diaconu, Whitehead (2021)).
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Moments of Dirichlet L-functions

We have

L(s, χ)k =
∑
n≥1

τk(n)χ(n)

ns
,

where τk(n) = (1 ∗ · · · ∗ 1︸ ︷︷ ︸
k

)(n).

Thus

L(1/2, χd)
k ≈

∑
n≤N

χd(n)τk(n)√
n

.

Then ∑∗

d≤X

L(1/2, χd)
k =

∑
n≤N

τk(n)√
n

∑∗

d≤X

(
d

n

)
.
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Moments of Dirichlet L-functions

∑∗

d≤X

L(1/2, χd)
k =

∑
n≤N

τk(n)√
n

∑∗

d≤X

(
d

n

)
.

Now ∑∗

d≤X

(
d

n

)
=

{
O(n1/2+ε), if n ̸= □,
X

2ζ(2)a(n) + O(n1/2+ε), if n = □,

so ∑∗

d≤X

L(1/2, χd)
k =

X

2ζ(2)

∑
n≤

√
N

τk(n
2)a(n2)

n
+ O

∑
n≤N

τk(n)n
ε


=

X

2ζ(2)
c(k)(logN)

k2+k
2 (1 + o(1)) + O

(
N1+ε

)
.

How large should N be?
A first guess gives N = X k . The approximate functional equation allows
N = X k/2. This recovers Jutila’s result.
To do better, Soundararajan treats the character sum using Poisson summation.
New off-diagonal terms appear. Where do they come from?
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Martin Čech (Charles University) Moments of real Dirichlet L-functions and MDS October 23, 2024 6 / 35



Moments of Dirichlet L-functions

∑∗

d≤X

L(1/2, χd)
k =

∑
n≤N

τk(n)√
n

∑∗

d≤X

(
d

n

)
.

Now ∑∗

d≤X

(
d

n

)
=

{
O(n1/2+ε), if n ̸= □,
X

2ζ(2)a(n) + O(n1/2+ε), if n = □,

so ∑∗

d≤X

L(1/2, χd)
k =

X

2ζ(2)

∑
n≤

√
N

τk(n
2)a(n2)

n
+ O

∑
n≤N

τk(n)n
ε


=

X

2ζ(2)
c(k)(logN)

k2+k
2 (1 + o(1)) + O

(
N1+ε

)
.

How large should N be?
A first guess gives N = X k . The approximate functional equation allows
N = X k/2. This recovers Jutila’s result.
To do better, Soundararajan treats the character sum using Poisson summation.

New off-diagonal terms appear. Where do they come from?
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The recipe
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The recipe

The approximate functional equation:

L(s, χd) ≈
∑
n≤x

χd(n)

ns
+ Xd(s)

∑
n≤y

χd(n)

n1−s
,

where

L(s, χd) = Xd(s)L(1− s, χd), Xd(s) = d1/2−sX (s), X (s) = πs−1/2 Γ
(
1−s
2

)
Γ
(
s
2

) .

Here xy ≍ d , it is important to have both parts.
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The recipe for real Dirichlet L-functions

∑∗

d≤X

L(s1, χd) . . . L(sk , χd)

≈
∑∗

d≤X

k∏
j=1

∑
n≤x

χd(n)

nsj
+ Xd(sj)

∑
n≤y

χd(n)

n1−sj

 .

Let J ⊂ {1, . . . , k} be the set of indices for which we take the second part of the
approximate functional equation. Let also

sJj =

{
sj , if j /∈ J,

1− sj , if j ∈ J.

A typical term after expanding the product is∑∗

d≤X

∏
j∈J

Xd(sj)
∑

n1,...,nk≥1

χd(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

.

Martin Čech (Charles University) Moments of real Dirichlet L-functions and MDS October 23, 2024 9 / 35



The recipe for real Dirichlet L-functions

∑∗

d≤X

L(s1, χd) . . . L(sk , χd) ≈
∑∗

d≤X

k∏
j=1

∑
n≤x

χd(n)

nsj
+ Xd(sj)

∑
n≤y

χd(n)

n1−sj

 .

Let J ⊂ {1, . . . , k} be the set of indices for which we take the second part of the
approximate functional equation. Let also

sJj =

{
sj , if j /∈ J,

1− sj , if j ∈ J.

A typical term after expanding the product is∑∗

d≤X

∏
j∈J

Xd(sj)
∑

n1,...,nk≥1

χd(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

.
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sJ1
1 . . . n

sJk
k
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j∈J

X (sj)
∑

n1,...,nk

1

n
sJ1
1 . . . n

sJk
k

∑∗

d≤X

χd(n1 . . . nk)

d

∑
j∈J

sj− |J|
2

.

χd(n1 . . . nk) is oscillating unless n1 . . . nk = □.

∑∗

d≤X

χd(n) =

{
X

2ζ(2)a(n) + small, if n = □,

small, if n ̸= □,

where a(n) =
∏

p|n
p

p+1 . If n = □, partial summation yields

∑∗

d≤X

χd(n)

dβ
∼ X 1−β

2ζ(2)(1− β)
a(n)
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The recipe for real Dirichlet L-functions

∏
j∈J

X (sj)
∑

n1,...,nk

1

n
sJ1
1 . . . n

sJk
k

∑∗

d≤X

χd(n1 . . . nk)

d

∑
j∈J

sj− |J|
2

.

We thus obtain a term of the form

TJ(X ; s1, . . . , sk) =
X

1+ |J|
2 −

∑
j∈J

sj

2ζ(2)

(
1 + |J|

2 −
∑
j∈J

sj

)∏
j∈J

X (sj)
∑

n1...nk=□

a(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

.
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The recipe for real Dirichlet L-functions

Recall:

∑∗

d≤X

L(s1, χd) . . . L(sk , χd) ≈
∑∗

d≤X

k∏
j=1

∑
n≤x

χd(n)

nsj
+ Xd(sj)

∑
n≤y

χd(n)

n1−sj

 .

For J ⊂ {1, . . . , k}, we have a term

TJ(X ; s1, . . . , sk) =
X 1+ |J|

2 −
∑

j∈J sj

2ζ(2)
(
1 + |J|

2 −
∑

j∈J sj
) ∏

j∈J

X (sj)
∑

n1...nk=□

a(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

.

The conjecture is that the moment is the sum of all the 2k terms:∑∗

d≤X

L(s1, χd) . . . L(sk , χd) =
∑

J⊂{1,...,k}

TJ(X ; s1, . . . , sk) + Error.
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Notes

TJ(X ; s1, . . . , sk) =
X 1+ |J|

2 −
∑

j∈J sj

2ζ(2)
(
1 + |J|

2 −
∑

j∈J sj
) ∏

j∈J

X (sj)
∑

n1...nk=□

a(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

.

The sum over n1 . . . nk = □ can be written as a product of zeta functions
and an Euler product.

It doesn’t converge, but it should be replaced by its
meromorphic continuation.

If sj = 1/2, several poles arise that combine and lead to the Keating–Snaith
conjecture.

The diagonal contribution T∅(X ; s1, . . . , sk) is

X

2ζ(2)

∑
n1...nk=□

a(n1 . . . nk)

ns11 . . . nskk
.

|J| = ℓ are called the ℓ-swap terms.

In practice, the terms often arise in a different form.
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Martin Čech (Charles University) Moments of real Dirichlet L-functions and MDS October 23, 2024 13 / 35



Notes

TJ(X ; s1, . . . , sk) =
X 1+ |J|

2 −
∑

j∈J sj

2ζ(2)
(
1 + |J|

2 −
∑

j∈J sj
) ∏

j∈J

X (sj)
∑

n1...nk=□

a(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

.

The sum over n1 . . . nk = □ can be written as a product of zeta functions
and an Euler product. It doesn’t converge, but it should be replaced by its
meromorphic continuation.

If sj = 1/2, several poles arise that combine and lead to the Keating–Snaith
conjecture.

The diagonal contribution T∅(X ; s1, . . . , sk) is

X

2ζ(2)

∑
n1...nk=□

a(n1 . . . nk)

ns11 . . . nskk
.

|J| = ℓ are called the ℓ-swap terms.

In practice, the terms often arise in a different form.
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One Dirichlet polynomial

How to recover the result by using just one long Dirichlet polynomial?

We got an asymptotic formula for a Dirichlet polynomial of length N = o(X ),
where we recovered the diagonal terms.

Conrey, Rodgers (2022): assuming GLH, they get an asymptotic formula for
polynomials of length N = o(X 2), which contains the 0- and 1-swap terms.

For longer polynomials, higher swap terms should appear.

For many families, we have tools to detect the 1-swap terms in various families,
but not higher swaps (Conrey–Keating, Hamieh–Ng, Conrey–Fazzari,
Baluyot–Turnage-Butterbaugh).

The 1-swap terms appear in a different form.
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Multiple Dirichlet series
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Strategy

Perron’s formula gives∑∗

d≤X

L(s1, χd) . . . L(sk , χd) =
1

2πi

∫
(2)

A(s1, . . . , sk ,w) · X
w

w
dw ,

where

A(s1, . . . , sk ,w) =
∑∗

d≥1

L(s1, χd) . . . L(sk , χd)

dw
.

Strategy:

Shift the integral to the left

compute contribution of poles

Need:

Meromorphic continuation

Poles and residues

Functional equations
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Properties of A(s1, . . . , sk ,w)

We have

A(s1, . . . , sk ,w) =
∑∗

d≥1

L(s1, χd) . . . L(sk , χd)

dw

=
∑∗

d≥1

∑
n1,...,nk≥1

(
d

n1...nk

)
ns11 . . . nskk d

w

=
∑

n1,...,nk≥1

LD
(
w ,
(

·
n1...nk

))
ns11 . . . nskk

,

where

LD(w , χ) =
∑∗

d≥1

χ(d)

dw
≈ L(w , χ)

L(2w , χ2)
.

If n1 . . . nk = □, LD
(
w ,
(

·
n1...nk

))
has a pole at w = 1 with residue a(n1...nk )

2ζ(2) .

Thus A(s1, . . . , sk ,w) has a pole at w = 1 with residue

1

2ζ(2)

∑
n1...nk=□

a(n1 . . . nk)

ns11 . . . nskk
.
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Contribution of the pole at w = 1

∑∗

d≤X

L(s1, χd) . . . L(sk , χd) =
1

2πi

∫
(c)

A(s1, . . . , sk ,w) · X
w

w
dw .

The pole at w = 1 with residue 1
2ζ(2)

∑
n1...nk=□

a(n1...nk )

n
s1
1 ...n

sk
k

contributes

X

2ζ(2)

∑
n1...nk=□

a(n1 . . . nk)

ns11 . . . nskk
.

This is exactly the diagonal term T∅(X ; s1, . . . , sk) from the recipe!

The other terms come from functional equations of A(s1, . . . , sk ,w).
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Functional equations

Let j ∈ {1, . . . , k}. We can use the functional equation

L(sj , χd) = d1/2−sjX (sj)L(1− sj , χd) :

A(s1, . . . , sk ,w) =
∑∗

d≥1

L(s1, χd) . . . L(sj , χd) . . . L(sk , χd)

dw

= X (sj)
∑∗

d≥1

L(s1, χd) . . . L(1− sj , χd) . . . L(sk , χd)

dw+sj−1/2

= X (sj)A(s1, . . . 1− sj , . . . , sk ,w + sj − 1/2).

Let σj denote the transformation
(s1, . . . , sk ,w) 7→ (s1, . . . , 1− sj , . . . , sk ,w + sj − 1/2). We can also use the
functional equation in more variables: for every J ⊂ {1, . . . , k}, we obtain a
functional equation under σJ =

∏
j∈J σj :

A(s1, . . . , sk ,w) =
∏
j∈J

X (sj) · A

sJ1 , . . . , s
J
k ,w +

∑
j∈J

sj −
|J|
2

 .
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Martin Čech (Charles University) Moments of real Dirichlet L-functions and MDS October 23, 2024 19 / 35



Functional equations

Let j ∈ {1, . . . , k}. We can use the functional equation

L(sj , χd) = d1/2−sjX (sj)L(1− sj , χd) :

A(s1, . . . , sk ,w) =
∑∗

d≥1

L(s1, χd) . . . L(sj , χd) . . . L(sk , χd)

dw

= X (sj)
∑∗

d≥1

L(s1, χd) . . . L(1− sj , χd) . . . L(sk , χd)

dw+sj−1/2

= X (sj)A(s1, . . . 1− sj , . . . , sk ,w + sj − 1/2).

Let σj denote the transformation
(s1, . . . , sk ,w) 7→ (s1, . . . , 1− sj , . . . , sk ,w + sj − 1/2).

We can also use the
functional equation in more variables: for every J ⊂ {1, . . . , k}, we obtain a
functional equation under σJ =

∏
j∈J σj :

A(s1, . . . , sk ,w) =
∏
j∈J

X (sj) · A

sJ1 , . . . , s
J
k ,w +

∑
j∈J

sj −
|J|
2

 .
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j∈J

X (sj) · A

sJ1 , . . . , s
J
k ,w +

∑
j∈J

sj −
|J|
2
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New poles
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J
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The pole at w = 1 becomes a pole at

w = 1 +
|J|
2

−
∑
j∈J

sj ,

with residue ∏
j∈J

X (sj) ·
1

2ζ(2)

∑
n1...nk=□

a(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

.
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Contribution of the poles

1

2πi

∫
(c)

A(s1, . . . , sk ,w) · X
w

w
dw .

The pole at

w = 1 +
|J|
2

−
∑
j∈J

sj ,

with residue ∏
j∈J

X (sj) ·
1

2ζ(2)

∑
n1...nk=□

a(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

contributes

X 1+ |J|
2 −

∑
j∈J sj

2ζ(2)
(
1 + |J|

2 −
∑

j∈J sj
) ∏

j∈J

X (sj) ·
∑

n1...nk=□

a(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

.

This is TJ(X ; s1, . . . , sk)!
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Martin Čech (Charles University) Moments of real Dirichlet L-functions and MDS October 23, 2024 21 / 35



Contribution of the poles

1

2πi

∫
(c)

A(s1, . . . , sk ,w) · X
w

w
dw .

The pole at

w = 1 +
|J|
2

−
∑
j∈J

sj ,

with residue ∏
j∈J

X (sj) ·
1

2ζ(2)

∑
n1...nk=□

a(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

contributes

X 1+ |J|
2 −

∑
j∈J sj

2ζ(2)
(
1 + |J|

2 −
∑

j∈J sj
) ∏

j∈J

X (sj) ·
∑

n1...nk=□

a(n1 . . . nk)

n
sJ1
1 . . . n

sJk
k

.

This is TJ(X ; s1, . . . , sk)!
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Meromorphic continuation

If A(s1, . . . , sk ,w) has a meromorphic continuation past the point
(1/2, . . . , 1/2, 1), we can shift the integral to the left, find the contribution of the
pole at w = 1 and obtain an asymptotic formula with power-saving error term.

This strategy is very general: applies to many families of L-functions, ratios
conjectures, one-level density, mollified moments, etc.

How far can we get the meromorphic continuation?
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Main result

Theorem (Č., 2024+)

Assume the Generalized Lindelöf hypothesis, or that k ≤ 4. Then A(s1, . . . , sk ,w)
has a meromorphic continuation to the region determined by the half-hyperspaces

Re(w) > 1/2,

Re(sj + 2w) > 7/4,

Re(sj1 + sj2 + 2w) > 5/2,

Re(sj1 + sj2 + sj3 + 2w) > 13/4,

Re(sj1 + sj2 + sj3 + sj4 + 2w) > 4.

and their images under the transforms σJ , J ⊂ {1, . . . , k}.

Only the last condition prevents us from crossing the point (1/2, . . . , 1/2, 1).

Get the first 3 moments unconditionally. The main terms appear exactly as
predicted by the recipe.

Also applies to long Dirichlet polynomials (recover results of Conrey and
Rodgers). The last condition prevents detection of 2-swap terms.
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Theorem (Č., 2024+)
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Regions of absolute convergence

Assume the generalized Lindelöf hypothesis |L(σ + it, χd)| ≪t d
ε for σ ≥ 1/2.

A(s1, . . . , sk ,w) =
∑∗

d≥1

L(s1, χd) . . . L(sk , χd)

dw

converges absolutely in the region

R1 = {Re(sj) ≥ 1/2, Re(w) > 1}.

The second expression

A(s1, . . . , sk ,w) =
∑

n1,...,nk

LD
(
w ,
(

·
n1...nk

))
ns11 . . . nskk

gives
R2 = {Re(sj) > 1, Re(w) > 1/2}.
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Regions of absolute convergence

R1 = {Re(sj) ≥ 1/2, Re(w) > 1}
R2 = {Re(sj) > 1, Re(w) ≥ 1/2}.

Bochner’s tube theorem: meromorphic continuation to the convex hull:

R3 = {Re(sj) ≥ 1/2, Re(w) ≥ 1/2, Re(sj + w) > 3/2}.

Captures diagonal terms, but not higher-swap terms (as expected).
Functional equation σ1 : (s1, s2, . . . , sk ,w) 7→ (1− s1, s2, . . . , sk ,w + s1 − 1/2):

σ1(R3) =

{
Re(s1) ≤ 1

2 , Re(sj) ≥ 1
2 ,

Re(s1 + w) ≥ 1,Re(w) > 1, Re(w + s1 + sj) > 2

}
.

Can detect the largest term X 3/2−s1 , but not the others of size X or X 2−s1−sj .
This would recover the Theorem with the condition Re(2w + s1 + s2) > 3. How to
do better?
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Regions of absolute convergence
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Extra functional equation

There is an extra (heuristic) functional equation:

A(s1, . . . , sk ,w) =
∑

n1,...,nk

LD
(
w ,
(

·
n1...nk

))
ns11 . . . nskk

≈
∑

n1,...,nk

L
(
w ,
(

·
n1...nk

))
ns11 . . . nskk

.

Assume all characters are primitive, all numbers are corpime etc.We get

A(s1, . . . , sk ,w) ≈
∑

n1,...,nk

L
(
w ,
(

·
n1...nk

))
ns11 . . . nskk

≈ X (w)
∑

n1,...,nk

L
(
1− w ,

(
·

n1...nk

))
n
s1+w−1/2
1 . . . n

sk+w−1/2
k

≈ X (w)A(s1 + w − 1/2, . . . , sk + w − 1/2, 1− w).
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Extra functional equation

A(s1, . . . , sk ,w) ≈
∑

n1,...,nk

L
(
w ,
(

·
n1...nk

))
ns11 . . . nskk

The functional equation in w gives:

A(s1, . . . , sk ,w) ≈ A(s1 + w − 1/2, . . . , sk + w − 1/2, 1− w).

This would give a new meromorphic continuation!

Equivalent to using Poisson summation.

How to deduce this rigorously?

Want to get rid of the subscript D ⇝ extend the sum to all positive integers ⇝
non-primitive characters.
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The work of Diaconu, Goldfeld, Hoffstein and others

Strategy of Diaconu, Goldfeld, Hoffstein and others: Construct a “perfect” MDS

A∗(s1, . . . , sk ,w) =
∑
d≥1

L(s1, χd) . . . L(sk , χd)b(s1, . . . , sk , d)

dw
,

where the weights b(s1, . . . , sk , d) are chosen such that the functional equations
hold. They are very complicated and hard to find.

Diaconu, Goldfeld, Hoffstein found the weights for k ≤ 3, which enabled them to
compute the first 3 moments.
Problems when k ≥ 4:

The weights are not unique

The associated group of functional equations is infinite (so for instance the
poles accumulate → don’t expect continuation everywhere.)

An extensive theory of Bump, Chinta, Diaconu, Friedberg, Goldfeld, Gunnels,
Hoffstein, Whitehead,...
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Our strategy

We work with the unmodified MDS

A(s1, . . . , sk ,w) =
∑∗

d≥1

L(s1, χd) . . . L(sk , χd)

dw
,

and deal with the non-primitive characters by using a functional equation valid for
all L(s, χ).

A(s1, . . . , sk ,w) satisfies an “imperfect” functional equation, but it still provides
continuation to a bigger region.
Advantages:

No need to find the complicated weights b(s1, . . . , sk , d).

No need to remove the weights to get the final result.

The functional equations in sj are straightforward.

Main terms from poles naturally correspond to the conjectures.

A disadvantage is that we can’t iterate the functional equations (related to
secondary terms).
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No need to find the complicated weights b(s1, . . . , sk , d).

No need to remove the weights to get the final result.

The functional equations in sj are straightforward.

Main terms from poles naturally correspond to the conjectures.

A disadvantage is that we can’t iterate the functional equations (related to
secondary terms).
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Functional equation for all characters

Proposition

Let χ be any character modulo n. Then we have

L(s, χ) = ε(χ)
(π
n

)s−1/2 Γ
(
1−s+a

2

)
Γ
(
s+a
2

) K (1− s, χ),

where

K (s, χ) =
∞∑
k=1

τ(χ, k)

ks
, τ(χ, q) =

1√
n

∑
j (mod n)

χ(j)e

(
kj

n

)

is a normalized shifted Gauss sum, and a = 0 or 1, ε(χ) = 1 or −i , depending on
the parity of χ.

If χ is a primitive character, then τ(χ, q) = χ̄(q)τ(χ, 1), and we recover the usual
functional equation.
Proof: follow any proof that uses Poisson summation.
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Functional equation in w

We thus obtain

A(s1, . . . , sk ,w) ≈ B(s1 + w − 1/2, . . . , sk + w − 1/2, 1− w),

where

B(s1, . . . , sk ,w) =
∑

n1,...,nk

K
(
w ,
(

·
n1...nk

))
ns11 . . . nskk

=
∑

n1,...,nk ,d

τ
((

·
n1...nk

)
, d
)

ns11 . . . nskk d
w

.

To obtain the continuation of A(s1, . . . , sk ,w), need the two regions of
convergence for B(s1, . . . , sk ,w).
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Second region for B(s1, . . . , sk ,w)

B(s1, . . . , sk ,w) =
∑

n1,...,nk

K
(
w ,
(

·
n1...nk

))
ns11 . . . nskk

=
∑

n1,...,nk ,d

τ
((

·
n1...nk

)
, d
)

ns11 . . . nskk d
w

.

To get a region for A from σw , need the two regions R1,R2 of convergence for
B(s1, . . . , sk ,w).

R2 is almost immediate from the definition.

We need that B(s1, . . . , sk ,w) is defined in the region

R1 = {Re(sj) > 1/2,Re(w) > 1}.

For this, first evaluate the sum over n = n1 . . . nk . Use that τ
(( ·

n

)
, d
)
is almost

multiplicative in n, so can examine the Euler product.
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Final region for A(s1, . . . , sk ,w)

From the functional equation in w and Bochner’s Tube Theorem, we obtain the
region

R = {Re(sj) ≥ 1/2, Re(w) > 1/2, Re(2sj + w) > 2}.

It remains to find the smallest region which:

contains R

is convex

is invariant under the affine transforms σJ .

This can be done and gives the final result.
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One-swap terms

As opposed to other works (Conrey-Rodgers,...), we obtain the one-swap terms in
the form predicted by the recipe. Why?

Classical setting:

Squares ⇝ diagonal terms

Squares after Poisson ⇝ one-swap terms

In MDS setting, Poisson summation corresponds to the functional equation in w .

We only used this functional equation to get the meromorphic continuation, not
to compute the residues at the poles.
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Thank you!
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