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♠ : Motivation: different ways to mix a deck of cards

Example 1: riffle shuffle

Credit: Will Roya, Playingcarddeck.com

Example 2: smooshing

Credit: Carson Ford, medium.com

Question: how long does it take to mix?
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♠ : The random transposition shuffle
Method :
Ï Pick two cards uniformly and indepen-

dently;

Ï If different, interchange them;

Ï If they are the same card, do nothing.

Credit: Elchanan Mossel

saut
Interpretation :
Ï Random walk on Sn with

P(σ,στ)=µn(τ)=
{

1/n if τ= id
2/n2 if τ is a transp.

P : transition matrix
µn : increment measure.
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saut
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saut
saut
saut

sautttttttt Cayley graph for n = 3



♠ : The random transposition shuffle

Method :
Ï Pick two cards uniformly and indepen-

dently;

Ï If different, interchange them;

Ï If they are the same card, do nothing.

saut
Interpretation :
Ï Random walk on Sn with

P(σ,στ)=µn(τ)=
{

1/n if τ= id
2/n2 if τ is a transp.

P : transition matrix
µn : increment measure.

saut
saut
saut
saut
saut
saut
saut
saut
saut

sautttttttt Cayley graph for n = 3



♠ : The random transposition shuffle

Method :
Ï Pick two cards uniformly and indepen-

dently;

Ï If different, interchange them;

Ï If they are the same card, do nothing.

saut
Interpretation :
Ï Random walk on Sn with

P(σ,στ)=µn(τ)=
{

1/n if τ= id
2/n2 if τ is a transp.

P : transition matrix
µn : increment measure.

saut
saut
saut
saut
saut
saut
saut
saut
saut

sautttttttt Cayley graph for n = 3



♠ : Distance to stationarity

Question : in which sense do we converge to uniformity?
saut

νn(t) : distribution of the walk after t steps.

Définition
Distance to stationarity after t steps :

dn(t) := dTV (νn(t),Unifn) .

saut
where for probability measures µ and ν on Sn,

dTV(µ,ν)= max
A⊂Sn

∣∣µ(A)−ν(A)
∣∣= 1

2
d1(µ,ν).

Question : How large should be take t so that dn(t)≈ 0?
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♠ : Cutoff for random transpositions

Theorem (DIACONIS AND SHAHSHAHANI, 1981)

It takes 1
2 n ln(n) steps to mix a deck of n cards by random transpositions.

For every 0< ϵ< 1,

dn

(
(1−ϵ)

1
2

n ln(n)
)
−−−−−→
n→+∞ 1 & dn

(
(1+ϵ)

1
2

n ln(n)
)
−−−−−→
n→+∞ 0

That is what is called the cutoff phenomenon.

More precisely, it takes 1
2 n ln(n)+Θ(n) steps to mix.
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♠ : Mixing time of the riffle shuffle
Question: for n = 52 cards. How many shuffles do we need?

Answer: About 7.

New York Times, 9 Jan. 1990
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♠ : Mixing time of the riffle shuffle

Question: and as the number of cards diverges?

Answer: Aldous 1986: Cutoff at 3
2 log2 n.

Answer: Bayer–Diaconis 1992: Precise estimates for n = 52, and cutoff
profile:

Theorem (BAYER–DIACONIS, 1992)

For the riffle shuffle, we have for every c ∈R,

dn

(
3
2

log2(n)+ c
)
−−−−−→
n→+∞ p(c) := dTV

(
N (0,1),N

(
2−c

2
p

3
,1

))
.

(Written up to integer parts.)
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♠ : Cutoff profile for random transpositions
Question: and for transpositions, can we find the profile?
Question asked by N. Berestycki at an AIM workshop in 2016.

Theorem (T., 2020)

For random transpositions, we have for every c ∈R,

dn

(
1
2

n ln(n)+ cn
)
−−−−−→
n→+∞ p(c) := dTV

(
Poiss

(
1+ e−2c) ,Poiss(1)

)
.

(Written up to integer parts.)

Ï Several different types of profiles are known. For example with
Ï normal laws for the riffle shuffle (Bayer–Diaconis, 1992), the random walk

on (Z/2Z)n (Diaconis–Graham–Morrison, 1990)), or simple excusion process on

the circle (Lacoin 2016),

Ï Poisson laws for k-cycles (k = o(n), Nestoridi–Olesker-Taylor, 2022) or more

generally all congugacy classes of the symmetric group (Olesker–Taylor T. 2024?),

Ï Tracy–Widom distributions for the ASEP on a segment

(Bufetov–Nejjar 2022),

Ï free Meixner laws for the diffusion on O+
N (Freslon–T.–Wang, 2022).
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♠ : Some results related to random transpositions
On random transpositions themselves :
Cutoff result : Diaconis, Shahshahani, 1981, PTRF
Precise lower bound : Matthews, 1988, J. of Th. Prob.
Phase transition result : N. Berestycki, Durrett, 2006, PTRF
More precise estimates on the cutoff window : Saloff-Coste–Zuniga, 2010, AAP
Probability of long cycles : Alon, Kozma, 2013, Duke
Strong stationary time : White, 2019
Cutoff profile : T., 2020, Ann. Prob.
a

Generalisations to other conjugacy classes :
Almost-precutoff for all conjugacy classes Roichman, 1996, Invent. Math.
Some conjugacy classes with few fixed points Lulov–Pak, 2002, J. Alg. Comb.
Precutoff for all conjugacy classes with few fixed points Larsen–Shalev, 2008, Invent. Math.
Cutoff for k-cycles : N. Berestycki, Schramm, Zeitouni, 2011, Ann. Prob.
Cutoff for conjugacy-invariant walks on Sn : N. Berestycki, Şengül, 2014, PTRF
Profile for k-cycles : Nestoridi, Olesker-Taylor, 2021, PTRF
Cutoff + profile for all conjugacy classes : Olesker-Taylor–T., 2024?

a

Some other generalisations :
Biaised random transpositions : Matheau-Raven, 2020
Quantum random transpositions : Freslon, T., Wang, 2021, PTRF
Star random transpositions : Nestoridi, 2021

a



♥ : The non-commutative Fourier transform

Using the Fourier transform : key point to study the walk.
Idea initialy due to Diaconis and Shahshahani.
saut

Not the one on R, where for ξ ∈R,

f̂ (ξ)=
∫
R

f (x)e−iξxdx,

but instead the one of finite groups G, where for λ ∈ Ĝ,

f̂ (λ)= ∑
g∈G

f (g)ρλ(g).

Inverse Fourier transform, isometry between Hilbert spaces, Parseval
identity.
saut
Pierre-Loïc Méliot, Representation Theory of Symmetric Groups, chap. 1.
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♥ : A method to find cutoff profiles

For transpositions, we then apply the inverse Fourier transform on Sn
to f := νn(t)−Unifn, and use that µn is constant on conjugacy classes
(so by Schur’s lemma each f̂ (λ) is a multiple of the identity (as a matrix)),
to get

2dn(t)= 1
n!

∑
σ∈Sn

∣∣∣∣∣∣ ∑
λ∈Ŝn

∗
dλst

λchλ(σ)

∣∣∣∣∣∣ .

sλ: eigenvalues of the (transition matrix of the) chain

dλ: multiplicities

chλ(σ): “eigenvectors”.
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λ∈Ŝn

∗
dλst

λchλ(σ)

∣∣∣∣∣∣ .

sλ: eigenvalues of the (transition matrix of the) chain

dλ: multiplicities

chλ(σ): “eigenvectors”.



♥ : Representations of the symmetric group

Ï Irreducible representations λ of Sn ←→ Young diagrams of size n.
(i.e. partitions λ= (λ1,λ2, ...) of the integer n.)

Example: n = 5= 4+1= 3+2= ....

5
1
4

2
3

1
1
3 ...

Ï Hook-length (of a box): Example: λ= [7,5,4,1], u = orange box.
The hook-length of u is H(λ,u)= 5.
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♦ : The hook-length formula
The dimensions dλ are easy to compute:

dλ = |ST(λ)| = |λ|!∏
u∈λ H(λ,u)

.

Example

The diagram λ= [3,2] has 5 standard tableaux, so dλ = |ST(λ)| = 5.

4 5
1 2 3

3 5
1 2 4

3 4
1 2 5

2 5
1 3 4

2 4
1 3 5 .

Example

The hook-lengths of (the boxes of) λ= [3,2] are 4,3,1,2,1, so
dλ = |λ|!∏

u∈λ H(λ,u) = 5!
4·3·1·2·1 = 5.

2 1
4 3 1 .
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♦ : Another type of problems: the cover time problem
Γ= (V ,E): graph (finite, connected).
(X t)t≥0: simple random walk on Γ.
Tx = “hitting time of the vertex x” = min {t : X t = x}.

Credits: mathinsight.org

Cover time: τcov = maxx∈V Tx = “first time at which all vertices have been
visited”.

Research on cover times: active since the works of Aldous in the 80’s.

Question: E [τcov]? Is τcov concentrated?



♦ : Cover time of tori

Example: the d-dimensional torus (Z/mZ)d . n := md .

Credits: Ljupco Kocarev (d = 1), Markus Quade (d = 2), researchgate

Ï d = 1: τcov ≍ n2, not concentrated.

Ï d = 2: cover time cutoff: τcov ∼ c2n(logn)2

(Dembo–Peres–Rosen–Zeitouni 2004, Ann. Math.)

Ï d ≥ 3, cover time profile: τcov ≈ cdn(logn+χ), where χ∼Gumbel, i.e.
P(χ≤ s)= e−e−s

.
(Belius 2013, Ann. Prob. / De Prata 2012)



♦ : Cover time of vertex-transitive graphs

Our result: characterisation of Gumbel fluctuations.
thit = thit(Γ)=maxx,y∈V ExTy.
Diam(Γ) = diameter of Γ = maxx,y∈Γ d(x, y).
n = n(Γ) := |V |.
Theorem (N. Berestycki–Hermon–T. 2023+)

For vertex-transitive graphs of (uniformly) bouned degree, we have

τcov

thit
− logn −−−−→

n→∞ χ if and only if Diam(Γ)2 logn = o(n).

Ï “Gumbel iff Γ is a bit more than 2-dimensional”
Ï Also iff the last points to be covered are “uniform”
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♦ : Thank you for your attention!

dn

(
3
2

log2(n)+ c
)
−−−−−→
n→+∞ dTV

(
N (0,1),N
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2−c

2
p

3
,1

))
dn
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2

n ln(n)+ cn
)
−−−−−→
n→+∞ dTV

(
Poiss

(
1+ e−2c) ,Poiss(1)

)
f̂ (λ)= ∑

g∈G
f (g)ρλ(g)
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