Mixing times and representation theory

Lucas TEYSSIER

PIMS-CNRS-Simons postdoc at UBC

PIMS PDF Seminar Series
6 December 2023

而pims

ब : Motivation: different ways to mix a deck of cards

Example 1: riffle shuffle

Credit: Will Roya, Playingcarddeck.com

৯ : Motivation: different ways to mix a deck of cards

Example 1: riffle shuffle

Credit: Will Roya, Playingcarddeck.com
Example 2: smooshing

Credit: Carson Ford, medium.com

৯ : Motivation: different ways to mix a deck of cards

Example 1: riffle shuffle

Credit: Will Roya, Playingcarddeck.com
Example 2: smooshing

Credit: Carson Ford, medium.com
Question: how long does it take to mix?

© : The random transposition shuffle

Method :

- Pick two cards uniformly and independently;
- If different, interchange them;
- If they are the same card, do nothing.

Credit: Elchanan Mossel

© : The random transposition shuffle

Method :

- Pick two cards uniformly and independently;
- If different, interchange them;
- If they are the same card, do nothing.

Interpretation :

- Random walk on \mathfrak{S}_{n} with

$$
P(\sigma, \sigma \tau)=\mu_{n}(\tau)= \begin{cases}1 / n & \text { if } \tau=i d \\ 2 / n^{2} & \text { if } \tau \text { is a transp. }\end{cases}
$$

P : transition matrix
μ_{n} : increment measure.

© : The random transposition shuffle

Method :

- Pick two cards uniformly and independently;
- If different, interchange them;
- If they are the same card, do nothing.

Interpretation :

- Random walk on \mathfrak{S}_{n} with

$$
P(\sigma, \sigma \tau)=\mu_{n}(\tau)= \begin{cases}1 / n & \text { if } \tau=\text { id } \\ 2 / n^{2} & \text { if } \tau \text { is a transp }\end{cases}
$$

P : transition matrix
μ_{n} : increment measure.

Cayley graph for $n=3$

Q : Distance to stationarity

Question : in which sense do we converge to uniformity?

© : Distance to stationarity

Question : in which sense do we converge to uniformity?
$v_{n}(t)$: distribution of the walk after t steps.

Définition

Distance to stationarity after t steps :

$$
\mathrm{d}_{n}(t):=\mathrm{d}_{\mathrm{TV}}\left(v_{n}(t), \operatorname{Unif}_{n}\right) .
$$

where for probability measures μ and v on \mathfrak{S}_{n},

$$
\mathrm{d}_{\mathrm{TV}}(\mu, v)=\max _{A \subset \mathfrak{S}_{n}}|\mu(A)-v(A)|=\frac{1}{2} \mathrm{~d}_{1}(\mu, v) .
$$

@ : Distance to stationarity

Question : in which sense do we converge to uniformity?
$v_{n}(t)$: distribution of the walk after t steps.

Définition

Distance to stationarity after t steps :

$$
\mathrm{d}_{n}(t):=\mathrm{d}_{\mathrm{TV}}\left(v_{n}(t), \operatorname{Unif}_{n}\right) .
$$

where for probability measures μ and v on \mathfrak{S}_{n},

$$
\mathrm{d}_{\mathrm{TV}}(\mu, v)=\max _{A \subset \mathfrak{S}_{n}}|\mu(A)-v(A)|=\frac{1}{2} \mathrm{~d}_{1}(\mu, v) .
$$

Question : How large should be take t so that $d_{n}(t) \approx 0$?

© : Cutoff for random transpositions

Theorem (DIACONIS AND SHAHSHAHANI, 1981)
It takes $\frac{1}{2} n \ln (n)$ steps to mix a deck of n cards by random transpositions. For every $0<\epsilon<1$,

$$
d_{n}\left((1-\epsilon) \frac{1}{2} n \ln (n)\right) \xrightarrow[n \rightarrow+\infty]{ } 1 \quad \& \quad d_{n}\left((1+\epsilon) \frac{1}{2} n \ln (n)\right) \xrightarrow[n \rightarrow+\infty]{ } 0
$$

That is what is called the cutoff phenomenon.

© : Cutoff for random transpositions

Theorem (DIACONIS AND SHAHSHAHANI, 1981)

It takes $\frac{1}{2} n \ln (n)$ steps to mix a deck of n cards by random transpositions. For every $0<\epsilon<1$,

$$
d_{n}\left((1-\epsilon) \frac{1}{2} n \ln (n)\right) \xrightarrow[n \rightarrow+\infty]{ } 1 \quad \& \quad d_{n}\left((1+\epsilon) \frac{1}{2} n \ln (n)\right) \xrightarrow[n \rightarrow+\infty]{ } 0
$$

That is what is called the cutoff phenomenon.
More precisely, it takes $\frac{1}{2} n \ln (n)+\Theta(n)$ steps to mix.

Q : Mixing time of the riffle shuffle

Question: for $n=52$ cards. How many shuffles do we need?

@ : Mixing time of the riffle shuffle

Question: for $n=52$ cards. How many shuffles do we need?
Answer: About 7.
296
D. BAYER AND P. DIACONIS

Table 1
Total variation distance for m shuffles of 52 cards

m	1	2	3	4	5	6	7	8	9	10		
$\left\\|Q^{m}-U\right\\|$	1.000	1.000	1.000	1.000	0.924	0.614	0.334	0.167	0.085	0.043		

$\bigcirc:$ Mixing time of the riffle shuffle

Question: for $n=52$ cards. How many shuffles do we need?

Answer: About 7.

@ : Mixing time of the riffle shuffle

Question: and as the number of cards diverges?

Q : Mixing time of the riffle shuffle

Question: and as the number of cards diverges?
Answer: Aldous 1986: Cutoff at $\frac{3}{2} \log _{2} n$.

@ : Mixing time of the riffle shuffle

Question: and as the number of cards diverges?
Answer: Aldous 1986: Cutoff at $\frac{3}{2} \log _{2} n$.
Answer: Bayer-Diaconis 1992: Precise estimates for $n=52$, and cutoff profile:

Theorem (BAYER-DIACONIS, 1992)

For the riffle shuffle, we have for every $c \in \mathbb{R}$,

$$
d_{n}\left(\frac{3}{2} \log _{2}(n)+c\right) \xrightarrow[n \rightarrow+\infty]{ } p(c):=\mathrm{d}_{\mathrm{TV}}\left(\mathscr{N}(0,1), \mathscr{N}\left(\frac{2^{-c}}{2 \sqrt{3}}, 1\right)\right) .
$$

© : Cutoff profile for random transpositions

Question: and for transpositions, can we find the profile?
Question asked by N. Berestycki at an AIM workshop in 2016.

Q : Cutoff profile for random transpositions

Question: and for transpositions, can we find the profile?
Question asked by N. Berestycki at an AIM workshop in 2016.

Theorem (T., 2020)

For random transpositions, we have for every $c \in \mathbb{R}$,

$$
d_{n}\left(\frac{1}{2} n \ln (n)+c n\right) \xrightarrow[n \rightarrow+\infty]{ } p(c):=\mathrm{d}_{\mathrm{TV}}\left(\operatorname{Poiss}\left(1+e^{-2 c}\right), \operatorname{Poiss}(1)\right)
$$

Q : Cutoff profile for random transpositions

Question: and for transpositions, can we find the profile?
Question asked by N. Berestycki at an AIM workshop in 2016.

Theorem (T., 2020)

For random transpositions, we have for every $c \in \mathbb{R}$,

$$
d_{n}\left(\frac{1}{2} n \ln (n)+c n\right) \xrightarrow[n \rightarrow+\infty]{ } p(c):=\mathrm{d}_{\mathrm{TV}}\left(\operatorname{Poiss}\left(1+e^{-2 c}\right), \operatorname{Poiss}(1)\right)
$$

(Written up to integer parts.)

- Several different types of profiles are known. For example with
- normal laws for the riffle shuffle (Bayer-Diaconis, 1992), the random walk on $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ (Diaconis-Graham-Morrison, 1990)), or simple excusion process on the circle (Lacoin 2016),
- Poisson laws for k-cycles $(k=o(n)$, Nestoridi-Olesker-Taylor, 2022) or more generally all congugacy classes of the symmetric group (Olesker-Taylor T. 2024?),
- Tracy-Widom distributions for the ASEP on a segment
(Bufetov-Nejjar 2022),
- free Meixner laws for the diffusion on O_{N}^{+}(Freslon-T.-Wang, 2022).

$\uparrow:$ Some results related to random transpositions

On random transpositions themselves :

Cutoff result : Diaconis, Shahshahani, 1981, PTRF
Precise lower bound : Matthews, 1988, J. of Th. Prob.
Phase transition result : N. Berestycki, Durrett, 2006, PTRF
More precise estimates on the cutoff window : Saloff-Coste-Zuniga, 2010, AAP
Probability of long cycles : Alon, Kozma, 2013, Duke
Strong stationary time : White, 2019
Cutoff profile : T., 2020, Ann. Prob.

Generalisations to other conjugacy classes :

Almost-precutoff for all conjugacy classes Roichman, 1996, Invent. Math.
Some conjugacy classes with few fixed points Lulov-Pak, 2002, J. Alg. Comb.
Precutoff for all conjugacy classes with few fixed points Larsen-Shalev, 2008, Invent. Math.
Cutoff for k-cycles : N. Berestycki, Schramm, Zeitouni, 2011, Ann. Prob.
Cutoff for conjugacy-invariant walks on $\mathfrak{S}_{n}:$ N. Berestycki, Șengül, 2014, PTRF
Profile for k-cycles : Nestoridi, Olesker-Taylor, 2021, PTRF
Cutoff + profile for all conjugacy classes : Olesker-Taylor-T., 2024?

Some other generalisations :

Biaised random transpositions : Matheau-Raven, 2020
Quantum random transpositions : Freslon, T., Wang, 2021, PTRF
Star random transpositions : Nestoridi, 2021

$\bigcirc:$ The non-commutative Fourier transform

Using the Fourier transform : key point to study the walk. Idea initialy due to Diaconis and Shahshahani.

$\bigcirc:$ The non-commutative Fourier transform

Using the Fourier transform : key point to study the walk. Idea initialy due to Diaconis and Shahshahani.

Not the one on \mathbb{R}, where for $\xi \in \mathbb{R}$,

$$
\hat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-i \xi x} \mathrm{~d} x,
$$

$\bigcirc:$ The non-commutative Fourier transform

Using the Fourier transform : key point to study the walk. Idea initialy due to Diaconis and Shahshahani.

Not the one on \mathbb{R}, where for $\xi \in \mathbb{R}$,

$$
\hat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-i \xi x} \mathrm{~d} x,
$$

but instead the one of finite groups G, where for $\lambda \in \widehat{G}$,

$$
\hat{f}(\lambda)=\sum_{g \in G} f(g) \rho^{\lambda}(g) .
$$

: The non-commutative Fourier transform

Using the Fourier transform : key point to study the walk. Idea initialy due to Diaconis and Shahshahani.

Not the one on \mathbb{R}, where for $\xi \in \mathbb{R}$,

$$
\hat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-i \xi x} \mathrm{~d} x,
$$

but instead the one of finite groups G, where for $\lambda \in \widehat{G}$,

$$
\hat{f}(\lambda)=\sum_{g \in G} f(g) \rho^{\lambda}(g) .
$$

Inverse Fourier transform, isometry between Hilbert spaces, Parseval identity.

Pierre-Loïc Méliot, Representation Theory of Symmetric Groups, chap. 1.

$\bigcirc:$ A method to find cutoff profiles

For transpositions, we then apply the inverse Fourier transform on \mathfrak{S}_{n} to $f:=v_{n}(t)-\mathrm{Unif}_{n}$, and use that μ_{n} is constant on conjugacy classes (so by Schur's lemma each $\widehat{f}(\lambda)$ is a multiple of the identity (as a matrix)), to get

$$
2 \mathrm{~d}_{n}(t)=\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}}\left|\sum_{\lambda \in \widehat{\mathfrak{S}_{n}}} \mathrm{~d}_{\lambda} s_{\lambda}^{t} \operatorname{ch}^{\lambda}(\sigma)\right| .
$$

$\bigcirc:$ A method to find cutoff profiles

For transpositions, we then apply the inverse Fourier transform on \mathfrak{S}_{n} to $f:=v_{n}(t)-\mathrm{Unif}_{n}$, and use that μ_{n} is constant on conjugacy classes (so by Schur's lemma each $\widehat{f}(\lambda)$ is a multiple of the identity (as a matrix)), to get

$$
2 \mathrm{~d}_{n}(t)=\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}}\left|\sum_{\lambda \in \widehat{\mathfrak{S}_{n}}} \mathrm{~d}_{\lambda} s_{\lambda}^{t} \operatorname{ch}^{\lambda}(\sigma)\right| .
$$

s_{λ} : eigenvalues of the (transition matrix of the) chain $\mathrm{d}_{\lambda}:$ multiplicities
$\operatorname{ch}^{\lambda}(\sigma)$: "eigenvectors".

$\bigcirc:$ Representations of the symmetric group

- Irreducible representations λ of $\mathfrak{S}_{n} \longleftrightarrow$ Young diagrams of size n. (i.e. partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ of the integer n.)

$\bigcirc:$ Representations of the symmetric group

- Irreducible representations λ of $\mathfrak{S}_{n} \longleftrightarrow$ Young diagrams of size n. (i.e. partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ of the integer n.) Example: $n=5=4+1=3+2=\ldots$.

$\bigcirc:$ Representations of the symmetric group

- Irreducible representations λ of $\mathfrak{S}_{n} \longleftrightarrow$ Young diagrams of size n. (i.e. partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ of the integer n.) Example: $n=5=4+1=3+2=\ldots$.

- Hook-length (of a box): Example: $\lambda=[7,5,4,1], u=$ orange box. The hook-length of u is $H(\lambda, u)=5$.

$\diamond:$ The hook-length formula

The dimensions d_{λ} are easy to compute:

$$
d_{\lambda}=|\mathbf{S T}(\lambda)|=\frac{|\lambda|!}{\prod_{u \in \lambda} H(\lambda, u)}
$$

: The hook-length formula

The dimensions d_{λ} are easy to compute:

$$
d_{\lambda}=|\mathbf{S T}(\lambda)|=\frac{|\lambda|!}{\prod_{u \in \lambda} H(\lambda, u)}
$$

Example

The diagram $\lambda=[3,2]$ has 5 standard tableaux, so $d_{\lambda}=|\mathrm{ST}(\lambda)|=5$.

4	5		3	5		3	4		2	5		2	4		
1	2	3	1	2	4	1	2	5	1	3	4	1	3	5	

: The hook-length formula

The dimensions d_{λ} are easy to compute:

$$
d_{\lambda}=|\mathbf{S T}(\lambda)|=\frac{|\lambda|!}{\prod_{u \in \lambda} H(\lambda, u)}
$$

Example

The diagram $\lambda=[3,2]$ has 5 standard tableaux, so $d_{\lambda}=|\mathrm{ST}(\lambda)|=5$.

4	5		3	5		3	4		2	5		2	4		
1	2	3	1	2	4	1	2	5	1	3	4	1	3		5

Example

The hook-lengths of (the boxes of) $\lambda=[3,2]$ are
$d_{\lambda}=\frac{|\lambda|!}{\prod_{u \in \lambda}(\lambda, u)}=\frac{5!}{4 \cdot 3 \cdot 1 \cdot 2 \cdot 1}=5$.

: Another type of problems: the cover time problem

$\Gamma=(V, E)$: graph (finite, connected).
$\left(X_{t}\right)_{t \geq 0}$: simple random walk on Γ.
$T_{x}=$ "hitting time of the vertex x " $=\min \left\{t: X_{t}=x\right\}$.

Credits: mathinsight.org
Cover time: $\tau_{\text {cov }}=\max _{x \in V} T_{x}=$ "first time at which all vertices have been visited".

Research on cover times: active since the works of Aldous in the 80 's.
Question: $\mathbb{E}\left[\tau_{\mathrm{cov}}\right]$? Is $\tau_{\text {cov }}$ concentrated?

: Cover time of tori

Example: the d-dimensional torus $(\mathbb{Z} / m \mathbb{Z})^{d} . n:=m^{d}$.

Credits: Ljupco Kocarev ($d=1$), Markus Quade $(d=2)$, researchgate

- $d=1: \tau_{\text {cov }}=n^{2}$, not concentrated.
- $d=2$: cover time cutoff: $\tau_{\text {cov }} \sim c_{2} n(\log n)^{2}$
(Dembo-Peres-Rosen-Zeitouni 2004, Ann. Math.)
- $d \geq 3$, cover time profile: $\tau_{\text {cov }} \approx c_{d} n(\log n+\chi)$, where $\chi \sim$ Gumbel, i.e. $\mathbb{P}(\chi \leq s)=e^{-e^{-s}}$.
(Belius 2013, Ann. Prob. / De Prata 2012)

: Cover time of vertex-transitive graphs

Our result: characterisation of Gumbel fluctuations.
$\mathrm{t}_{\text {hit }}=\mathrm{t}_{\text {hit }}(\Gamma)=\max _{x, y \in V} \mathbb{E}_{x} T_{y}$.
$\operatorname{Diam}(\Gamma)=$ diameter of $\Gamma=\max _{x, y \in \Gamma} d(x, y)$.
$n=n(\Gamma):=|V|$.

Theorem (N. Berestycki-Hermon-T. 2023+)

For vertex-transitive graphs of (uniformly) bouned degree, we have

$$
\frac{\tau_{\text {cov }}}{t_{\text {hit }}}-\log n \underset{n \rightarrow \infty}{ } \chi \quad \text { if and only if } \quad \operatorname{Diam}(\Gamma)^{2} \log n=o(n) .
$$

: Cover time of vertex-transitive graphs

Our result: characterisation of Gumbel fluctuations.
$\mathrm{t}_{\text {hit }}=\mathrm{t}_{\text {hit }}(\Gamma)=\max _{x, y \in V} \mathbb{E}_{x} T_{y}$.
$\operatorname{Diam}(\Gamma)=$ diameter of $\Gamma=\max _{x, y \in \Gamma} d(x, y)$.
$n=n(\Gamma):=|V|$.

Theorem (N. Berestycki-Hermon-T. 2023+)

For vertex-transitive graphs of (uniformly) bouned degree, we have

$$
\frac{\tau_{\mathrm{cov}}}{\mathrm{t}_{\text {hit }}}-\log n \underset{n \rightarrow \infty}{ } \chi \quad \text { if and only if } \quad \operatorname{Diam}(\Gamma)^{2} \log n=o(n) .
$$

- "Gumbel iff Γ is a bit more than 2-dimensional"
- Also iff the last points to be covered are "uniform"

$\diamond:$ Thank you for your attention!

$$
\begin{gathered}
\mathrm{d}_{n}\left(\frac{3}{2} \log _{2}(n)+c\right) \xrightarrow[n \rightarrow+\infty]{ } \mathrm{d}_{\mathrm{TV}}\left(\mathscr{N}(0,1), \mathscr{N}\left(\frac{2^{-c}}{2 \sqrt{3}}, 1\right)\right) \\
\mathrm{d}_{n}\left(\frac{1}{2} n \ln (n)+c n\right) \xrightarrow[n \rightarrow+\infty]{ } \mathrm{d}_{\mathrm{TV}}\left(\operatorname{Poiss}\left(1+e^{-2 c}\right), \operatorname{Poiss}(1)\right) \\
\hat{f}(\lambda)=\sum_{g \in G} f(g) \rho^{\lambda}(g) \\
\frac{\tau_{\mathrm{cov}}}{\mathrm{t}_{\mathrm{hit}}}-\log n \xrightarrow[n \rightarrow \infty]{ } \chi
\end{gathered}
$$

