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& : Motivation: different ways to mix a deck of cards

Example 1: riffle shuffle
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Example 2: smooshing

Credit: Carson Ford, medium.com

Question: how long does it take to mix?




#& : The random transposition shuffle

Method :

» Pick two cards uniformly and indepen-
dently;

» If different, interchange them;
» If they are the same card, do nothing.
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1/n ifr=1id

P(0,07) = pn(7) =
(0,07) = pin(7 {2/;12 if 7 is a transp.

P : transition matrix
Un : increment measure.

Cayley graph for n=3
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& : Distance to stationarity

Question : in which sense do we converge to uniformity?

v () : distribution of the walk after ¢ steps.

Distance to stationarity after ¢ steps :

dy(£) := dpy (v (8), Unif,,).

where for probability measures g and v on S,
drv(y,v) = max |[,t(A) - V(A)| = 1dl(p,v).
AcG, 2

Question : How large should be take ¢ so that d,,(¢) = 0?



& : Cutoff for random transpositions

Theorem (DIACONIS AND SHAHSHAHANI, 1981)

It takes %nln(n) steps to mix a deck of n cards by random transpositions.
For every 0<e<1,

1 1

n—+oo

That is what is called the cutoff phenomenon.



& : Cutoff for random transpositions

Theorem (DIACONIS AND SHAHSHAHANI, 1981)

It takes %nln(n) steps to mix a deck of n cards by random transpositions.
For every 0<e<1,

1 1

n—+oo

That is what is called the cutoff phenomenon.
More precisely, it takes %nln(n) + O(n) steps to mix.
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Answer: About 7.
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nce Times

Rl = (8

New York Times, 9 Jan. 1990
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Question: and as the number of cards diverges?
Answer: Aldous 1986: Cutoff at %logQ n.

Answer: Bayer-Diaconis 1992: Precise estimates for n = 52, and cutoff
profile:

Theorem (BAYER—DIACONIS, 1992)
For the riffle shuffle, we have for every c € R,

p(c):=dry (W(o,n,w( 2 1))

3
dn (Elogz(n)+c) Wi

n—-+oo

(Written up to integer parts.)
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Question asked by N. Berestycki at an AIM workshop in 2016.
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Theorem (T., 2020)

For random transpositions, we have for every c € R,
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& : Cutoff profile for random transpositions

Question: and for transpositions, can we find the profile?
Question asked by N. Berestycki at an AIM workshop in 2016.

Theorem (T., 2020)

For random transpositions, we have for every c € R,

p(c) := dyy (Poiss (1 +e %), Poiss(1)).

n—+oo

d, (%nln(n) + cn)

(Written up to integer parts.)

» Several different types of profiles are known. For example with

» normal laws for the riffle shuffle (Bayer—Diaconis, 1992), the random walk
on (Z/27)" (Diaconis—Graham—Morrison, 1990)), or simple excusion process on
the circle (Lacoin 2016),

» Poisson laws for k-cycles (% = o(n), Nestoridi-Olesker-Taylor, 2022) or more
generally all congugacy classes of the symmetric group (Olesker-Taylor T. 20247?),

» Tracy-Widom distributions for the ASEP on a segment
(Bufetov—Nejjar 2022),

» free Meixner laws for the diffusion on O3, (Freslon-T—Wang, 2022).



& : Some results related to random transpositions

On random transpositions themselves :

Cutoff result : , 1981, PTRF

Precise lower bound : , 1988, J. of Th. Prob.

Phase transition result : , 2006, PTRF

More precise estimates on the cutoff window : , 2010, AAP
Probability of long cycles : , 2013, Duke

Strong stationary time : , 2019

Cutoff profile : T, 2020, Ann. Prob.

Generalisations to other conjugacy classes :

Almost-precutoff for all conjugacy classes , 1996, Invent. Math.

Some conjugacy classes with few fixed points , 2002, J. Alg. Comb.

Precutoff for all conjugacy classes with few fixed points , 2008, Invent. Math.
Cutoff for k-cycles : , 2011, Ann. Prob.

Cutoff for conjugacy-invariant walks on &, : , 2014, PTRF

Profile for k-cycles : , 2021, PTRF

Cutoff + profile for all conjugacy classes : ,2024?

Some other generalisations :

Biaised random transpositions : , 2020
Quantum random transpositions : , 2021, PTRF
Star random transpositions : , 2021
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Q : The non-commutative Fourier transform

Using the Fourier transform : key point to study the walk.
Idea initialy due to Diaconis and Shahshahani.

Not the one on R, where for ¢ € R,

o) = fR F)e ¥ dx,

but instead the one of finite groups G, where for 1 € G,

fy=Y fl@p'e.
g€G

Inverse Fourier transform, isometry between Hilbert spaces, Parseval
identity.

Pierre-Loic Méliot, Representation Theory of Symmetric Groups, chap. 1.



Q@ : A method to find cutoff profiles

For transpositions, we then apply the inverse Fourier transform on G,

to / :=v,(¢t) — Unif,,, and use that u, is constant on conjugacy classes
(so by Schur’s lemma each /(1) is a multiple of the identity (as a matrix)),
to get
1 t A
2d,(¢) = - Z Z dys’ch™(o))|.
‘oeS, /leé\n*




Q@ : A method to find cutoff profiles

For transpositions, we then apply the inverse Fourier transform on G,

to / :=v,(¢t) — Unif,,, and use that u, is constant on conjugacy classes
(so by Schur’s lemma each /(1) is a multiple of the identity (as a matrix)),
to get

2dn(t):l‘ Y I Y disieh(o)].

n: 0'€6n /lEé\n*

s): eigenvalues of the (transition matrix of the) chain
d,: multiplicities

ch(0): “eigenvectors”.
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» Irreducible representations A of &,, — Young diagrams of size n.
(i.e. partitions 1 = (11, A9,...) of the integer n.)
Example: n=5=4+1=3+2=....

s [ [ [ 1]

[ 1 ]s

[ ]

» Hook-length (of a box): Example: 1 =[7,5,4,1],

The hook-length of u is

(A, u)=5.

[

= orange box.
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¢ : The hook-length formula

The dimensions d ) are easy to compute:

!
Mier ' (A,u)

The diagram A =[3,2] has 5 standard tableaux, so d; = |ST(1)| =5.

dy=IST(V)I =

5 315 3|4 215 24
1]2]3] [1]z2[4] [1]2]5 1)3[4] [Al3]5
The hook 1engths of (the boxes of) 1 =[3,2] are , SO
d)= 5L —5.

Hd (/1 y T 43121




< : Another type of problems: the cover time problem

I'=(V,E): graph (finite, connected).
(X¢)¢>0: simple random walk on I'.
T, = “hitting time of the vertex x” = min{¢: X; = x}.

nodes (or vertices)

!

edges
(or links)
N

Credits: mathinsight.org

Cover time: 7.,y = max,cy T, = “first time at which all vertices have been
visited”.
Research on cover times: active since the works of Aldous in the 80’s.

Question: E[7cy]? Is 7cov concentrated?



& : Cover time of tori

Example: the d-dimensional torus (Z/mZ)?. n:= m?.

—@—__ >
3
1
[ \
o o
| i
\ )
B 5
A s
——
Credits: Ljupco Kocarev (d = 1), Markus Quade (d = 2), researchgate

> d =1: Teoy = n2, not concentrated.

» d =2: cover time cutoff: 7.4, ~ cm(logn)2
(Dembo—Peres—Rosen—Zeitouni 2004, Ann. Math.)

» d =3, cover ti_me profile: 1¢oy = cqn(logn + x), where y ~ Gumbel, i.e.

P(y<s)=e ¢’
(Belius 2013, Ann. Prob. / De Prata 2012)




& : Cover time of vertex-transitive graphs

Our result: characterisation of Gumbel fluctuations.
thit = thit(I) = max, yev B, T'y.

Diam(I') = diameter of I' = max, ,er d(x, y).
n=n):=|V]|.

Theorem (N. Berestycki—-Hermon-T. 2023+)

For vertex-transitive graphs of (uniformly) bouned degree, we have

Tcov

thit

—logn —= if and only if Diam(I)?logn = o(n).




& : Cover time of vertex-transitive graphs

Our result: characterisation of Gumbel fluctuations.
thit = thit(I) = max, yev B, T'y.

Diam(I') = diameter of I' = max, ,er d(x, y).
n=n):=|V]|.

Theorem (N. Berestycki—-Hermon-T. 2023+)

For vertex-transitive graphs of (uniformly) bouned degree, we have

Tcov

thit

—logn —= if and only if Diam(I)?logn = o(n).

» “Gumbel iff T is a bit more than 2-dimensional”

» Also iff the last points to be covered are “uniform”



¢ : Thank you for your attention!

'\ g
- 00000000

2—C
dpy [0, 1), (2= 1
TV( ©.1 (2\/3 ))

drv (Poiss (1 +e72%), Poiss(1))

d, (g logy(n) + c)

n—+oo

1
d, (gnln(n)+ cn

n—+oo

f =Y fl@p'e

geG




