Counting "Supersingularity" in Arithmetic Statistics

Wanlin Li, Washington University in St. Louis Jun 18, 2024

Recall: Chebyshev's bias

Chebyshev (1853): there are more primes equal $4k + 3 \le X$ for most X.

Х	p = 4k + 1	p = 4k + 3	
100	11	13	•
1000	80	87	
10000	609	619	
26862	1473	1473	
Question: Consider $\chi_4(p) = \begin{cases} 1, & p = 4k + 1 \\ -1, & p = 4k + 3 \end{cases}$, how often is			
$\sum_{p \leq X} \chi_4(p) < 0?$			
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Number of primes p < X

To answer this question, study

$$L(s,\chi) = \prod_{p} (1-\chi(p)p^{-1})^{-s}.$$

Recall: Roots of $L(s, \chi)$ and LI

Generalized Riemann Hypothesis (GRH, Piltz 1884):

Any non negative real root $\sigma + it$ of $L(s, \chi)$ satisfies $\sigma = \frac{1}{2}$.

Grand Simplicity Hypothesis/ Linear Independene Conjecture (GSH/LI, Wintner 1938):

The set $\{t \ge 0 \mid L(\frac{1}{2} + it, \chi) = 0\}$ is \mathbb{Q} -linearly independent.

Theorem (Rubinstein- Sarnak, 1994)

Under the GRH and GSH/LI, the log density of $\{X | \sum_{p < X} \chi(p) < 0\}$ is

 $\delta(\chi_4) \approx 99.59\%.$

Moreover, for any quadratic character χ , 50% $< \delta(\chi) < 100\%$.

Question: What happens when LI fails?

Will we see different prime distribution behavior?

How can LI fail and where to find examples?

LI: The set $\{t \ge 0 \mid L(\frac{1}{2} + it, \chi) = 0\}$ is \mathbb{Q} -linearly independent.

Note that one way for LI to fail is $L(s, \chi)$ having a real root at 1/2.

In the case where χ is a quadratic character over \mathbb{Q} , may not exit?

Conjecture (Chowla, 1965) For any quadratic Dirichlet character χ over \mathbb{Q} , $L(1/2, \chi) \neq 0$.

More generally, recall from Youness' talk:

Haselgrove's condition for the modulus q:

For all characters χ modulo q, $L(s, \chi) \neq 0$ for all $s \in (0, 1)$.

Chowla's conjecture is still open and suggests it might be hard to find a counter-example for LI over \mathbb{Q} . Over some number fields, Dirichlet character χ with $L(1/2, \chi) = 0$ is known to exist. (Armitage, 1972)

Bailleul (2021): Such fields give examples for reversed bias!

Dirichlet L-functions over $\mathbb{F}_q(t)$

To study order ℓ Dirichlet characters χ over $\mathbb{F}_q(t)$ is equivalent to study cyclic field extensions $L/\mathbb{F}_q(t)$ because

$$\zeta_L(s) = \zeta_{\mathbb{F}_q(t)}(s) \prod_{i=1}^{\ell-1} L(s, \chi^i).$$

In particular, we are interested in fields *L* whose constant field is \mathbb{F}_q . Such an *L* is a function field of a smooth projective curve C/\mathbb{F}_q .

$$egin{array}{lll} k(\mathcal{C}) & \mathcal{C} & & \ \mathbb{Z}/\ell\mathbb{Z} & & & \ \mathbb{F}_q(t) & \mathbb{P}^1_{\mathbb{F}_q} & \end{array}$$

Note that since there are nontrivial maps $\mathbb{F}_q(t) \to \mathbb{F}_q(t)$, there is NOT a canonical map $\mathbb{F}_q(t) \hookrightarrow k(C)$ or a well-defined degree.

Primes of function fields and points on curves

As a global field, the function field k(C) has a set of valuations such that

$$\prod_{v} |h|_{v} = 1, \quad \forall h \in k(C).$$

Each v corresponds to a point $P \in C(\overline{\mathbb{F}}_q)$, and

$$|h|_{v_P} = |P|^{-d_P}$$

where d_P is the order of vanishing and |P| is the size of the defining field.

Note that there is no Archimedean place and thus no canonical choice of ∞ or ring of integers.

The zeta function of k(C) is given by

$$\zeta_{k(C)}(s) = \prod_{P \in C(\overline{\mathbb{F}}_q)} (1 - |P|^{-s})^{-1}.$$

The **Weil conjectures** imply that $\zeta_{\mathcal{K}(C)}(s)$ can be computed from $|C(\mathbb{F}_q)|, |C(\mathbb{F}_{q^2})|, \cdots, |C(\mathbb{F}_{q^g})|.$

Weil conjectures:

•
$$\zeta_C(s) = \frac{P(q^{-s})}{(1-q^{-s})(1-q^{1-s})}$$
 where $P(q^{-s}) = \prod_{i=1}^{2g} (1-\alpha_i q^{-s}) \in \mathbb{Z}[q^{-s}]$

•
$$\alpha_i \alpha_{2g-i+1} = q$$
, for all $1 \le i \le g$

•
$$|\alpha_i| = \sqrt{q}$$
, roots are of the form $q^s = \sqrt{q}e^{i\theta}$.

Note that for the curve \mathbb{P}^1 with function field $\mathbb{F}_q(x)$, its zeta function is

$$\zeta_{\mathbb{P}^1}(s) = \frac{1}{(1-q^{-s})(1-q^{1-s})}$$

If C corresponds to a quadratic extension $K/\mathbb{F}_q(x)$ with character χ , then

$$\zeta_C(s)/\zeta_{\mathbb{P}^1}(s) = L(s,\chi) = P(q^{-s}).$$

LI for χ is equivalent to the multiplicative group generated by

$$\{e^{i\theta_1},\cdots,e^{i\theta_g}\}$$

having rank g. (Maximal Angle Rank)

Central vanishing $L(1/2, \chi) = 0 \iff \alpha_i = \sqrt{q}$ for some *i*.

Question: How to find curves with small Frobenius angle rank?

7/21

What is supersingularity?

Consider an elliptic curve defined over a finite field \mathbb{F}_q as

$$\mathscr{E}: y^2 = x^3 + Ax + B, \qquad A, B \in \mathbb{F}_q.$$

The polynomial of Frobenius is

$$P(q^{-s}) = (1 - \alpha q^{-s})(1 - \beta q^{-s}), \qquad \alpha \beta = q.$$

Weil conjectures $\Rightarrow |\alpha| = |\beta| = \sqrt{q}$, algebraic integer

 \mathscr{E} is called **supersingular** if $v_q(\alpha) = v_q(\beta) = \frac{1}{2}$; \mathscr{E} is called **ordinary** if $v_q(\alpha) = 1$, $v_q(\beta) = 0$.

For a genus g curve C/\mathbb{F}_q with polynomial

$$P(q^{-s}) = \prod_{i=1}^{g} (1 - \alpha_i q^{-s}) (T - \beta_i q^{-s}), \qquad \alpha_i \beta_i = q_i$$

Its Jacobian \mathscr{A} is called **supersingular** if $v_q(\alpha_i) = v_q(\beta_i) = \frac{1}{2}$ for all *i*; \mathscr{A} is called **ordinary** if $v_q(\alpha_i) = 1$, $v_q(\beta_i) = 0$ for all *i*. ^{8/21}

Large Endomorphism:

ordinary \mathscr{E}/\mathbb{F}_q has endomorphism algebra $\mathbb{Q}(\sqrt{-d})$;

for supersingular \mathscr{E}/\mathbb{F}_q , a quaternion algebra over \mathbb{Q} .

 \mathscr{A} supersingular $\iff \mathscr{A} \sim \mathscr{E}_{ss} \times \cdots \cdot \mathscr{E}_{ss}$, thus very large $\operatorname{End}_{\mathbb{F}_{a}}(\mathscr{A}) \otimes \mathbb{Q}!$

Extreme point counting:

Over \mathbb{F}_{p^2} , the elliptic curve with minimal and maximal number of \mathbb{F}_{p^2} -points are supersingular. Curves with supersingular Jacobians can have extreme point counting.

Multiplicative relation among eigenvalues:

 \mathscr{A} supersingular \iff every eigenvalue $\alpha_i = \mu \sqrt{q}$ satisfying $\mu^n = 1$. Jac(*C*) supersingular = maximally violating LI! Moreover, over \mathbb{F}_{q^n} , we get central vanishing as the unique root. Central vanishing \iff Jacobian having a supersingular factor.

Exceptional bias on prime distribution from "supersingularity"

Devin–Meng (2021): the quadratic character over $\mathbb{F}_9(t)$ corresponding to the **supersingular** curve

$$y^2 = x^4 + 2x^3 + 2x + (\sqrt{3})^7$$

has the property that $\delta(\chi) = 100\%$.

Theorem (Bailleul–Devin–Keliher –L., 2023)

For any χ with $\delta(\chi) = 100\%$, the Jacobian of the corresponding curve admits a supersingular isogeny factor.

Cha (2008): the quadratic character over $\mathbb{F}_5(t)$ corresponding to the **supersingular** curve

$$y^2 = x^5 + 3x^4 + 4x^3 + 2x + 2$$

has the property that $\delta(\chi) < 50\%$, bias in the "wrong" direction.

Theorem (Bailleul–Devin–Keliher –L., 2023)

For any square q, there exists a supersingular genus 2 curve corresponding to a quadratic character satisfying $\delta(\chi) < 50\%$.

Different ways to count "supersingularity"

"Question": How to count "supersingularity"?

Choose a "family" ${\mathcal S},$ study the density of "supersingular" ${\mathscr A}$ in "family".

- large g limit: When S is not an algebraic family (e.g. hyperelliptic Jacobians), fix F_q and consider A/F_q in the family with dimension ≤ g, study the density of "supersingular" objects as g → ∞.
 comment: close to counting in number fields, Cohen-Lenstra type
- Reduction: A → S algebraic family with S = Spec O where O = Z or F_q[t], for p ∈ O with height ≤ X, study the density of "supersingular" A/k_p as X → ∞.

comment: study Galois representation of $\mathcal{A}[\ell^{\infty}]$

How to find/construct supersingular curves?

- Honda-Tate theory for low genus case
- Shimura-Taniyama theorem for high genus case

Recall: supersingular \mathscr{A} has larger $\operatorname{End}_{\overline{\mathbb{F}}_p}^0(\mathscr{A})$, conversely endomorphism forces \mathscr{A} to be more "supersingular".

Shimura–Taniyama (1961): The "supersingularity" of $\mathcal{A} \mod p$ with CM by (E, ϕ) is determined by the behavior of p in the extension E/\mathbb{Q} .

Example: An elliptic curve *E* over a number field *L* with CM by $K = \mathbb{Q}(\sqrt{-D})$, *E* mod \mathfrak{p} is ordinary at a prime $\mathfrak{p} \subset L$ above $p \subset \mathbb{Q}$ if and only if *p* splits in K/\mathbb{Q} .

The curve $y^2 = x^3 - 1$ is supersingular over \mathbb{F}_p for any $p \equiv 2 \mod 3$.

Example: Jacobian of $y^{\ell} = x(x-1)(x+1)^{\ell-2}$ is supersingular if p is inert in $\mathbb{Q}(\zeta_{\ell})/\mathbb{Q}(\zeta_{\ell}+\zeta_{\ell}^{-1})$.

Counting "supersingularity": large q limit

Consider an elliptic curve defined as

$$\mathscr{E}: y^2 = x^3 + Ax + B$$

with $A, B \in \mathbb{F}_q$.

Question: What is

$$\lim_{q\to\infty}\frac{|\{A,B\mid \mathscr{E} \text{ is supersingular}\}|}{q^2}$$
?

Answer: 0

When vary the parameters $A, B \in \overline{\mathbb{F}}_p$, the number of isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}}_p$ is $\approx \frac{p}{12}$.

ss ss ordinary ss
$$X_0(1)_{\overline{\mathbb{F}}_p}$$

The geometry of "supersingular" locus

The *p*-adic valuation of $\alpha_1, \dots, \alpha_{2g}$ form a poset and this gives a (Newton) stratification of $\mathcal{A}_g/\overline{\mathbb{F}}_p$. (Oort, 2001)

The geometry of various Newton locus in Shimura varieties have been studied by Chai, Oort, Fox, Howard, Pappas, Vollaard, Wedhorn, \cdots

Open problem: which Newton locus contain Jacobians of (hyperelliptic) curves?

This problem had been studied by many authors.

(See a survey by Pries: Current results on Newton polygons of curves) Can use curves with large automorphism group to force "supersingular".

Counting "supersingularity": large *g* limit

Cais–Ellenberg–Zureick-Brown (2012): described a probability distribution of principally quasi-polarized *p*-divisible groups ($\mathscr{A}[p^{\infty}]$), computed the distribution of discrete invariants from this distribution, obtained a heuristic analogous to conjectures of Cohen-Lenstra type.

They carried out numerical investigation and found the proportion of ordinary plane curves over \mathbb{F}_3 seems to agree with thee heuristic while hyperelliptic curves over \mathbb{F}_3 , plane curves over \mathbb{F}_2 seem not.

Sankar (2019): proved the density of ordinary Artin-Schreier curves $y^{p} - y = f(x)$ over \mathbb{F}_{q} and superelliptic curves $y^{\ell} = f(x)$ over $\mathbb{F}_{2^{n}}$ do not obey the CEZB heuristic.

Garton–Thunder–Weir (2024): extended CEZB, described an alternative model which matches the data for hyperelliptic curves defined over \mathbb{F}_{3^n} .

Question: Given an elliptic curve E over a number (global) field L, what's the density of p satisfying ($E \mod p$) ordinary/supersingular?

Complete answer for CM case: By Shimura–Taniyama (1961), if E/L has CM by $K = \mathbb{Q}(\sqrt{-D})$, then E has ordinary reduction at primes $q \subset L$ above $p \subset \mathbb{Q}$ when p splits in K/\mathbb{Q} . (congruence condition)

Conjecture (Lang–Trotter, 1976): When E/\mathbb{Q} is not CM, the set of supersingular primes for *E* with height $\leq X$ has density $\approx \sqrt{X}/\log X$.

Theorem (Serre, 1977): For any elliptic curve *E* over a number field *L* without CM, its set of ordinary primes has density 1.

Theorem (Elkies, 1987) For any elliptic curve E/\mathbb{Q} , there exist infinitely many supersingular primes.

Conjecture (Serre): For any abelian variety *A* of dimension *g* over a number field *L*, the density of ordinary primes is positive.

(Chebotarev's density?)

Theorem (Katz, 1982; Sawin, 2016): For g = 2, the set of ordinary primes has density 1, $\frac{1}{2}$ or $\frac{1}{4}$. The later two cases could only occur for A with a CM isogeny factor and the density becomes 1 after a finite field extension.

More results by Noot, Pink, Fité, ···

Still unknown for a generic abelian threefold.

Theorem (Cantoral Farfán–L.–Mantovan–Pries–Tang, 2023) Conjecture holds for the Jacobian of $C : y^5 = x(x-1)(x-t)$.

And this density is 1 over $L(\zeta_5)$.

Strategy on Density of Ordinary Primes

- Given L/Q, the set of q above a split prime p ⊂ Q has density 1. Thus, it suffices to consider the set of split primes and A/F_p.
- For an elliptic curve &/𝔽_p with p > 2, it is ordinary when p ∤ a. By the Hasse bound, |a| ≤ 2√p. Thus, & ordinary ⇔ a ≠ 0.

This a is an invariant of the Frobenius which

- 1. asserts \mathscr{E} ordinary;
- 2. takes finite integral values for non ordinary \mathscr{E} independent of p.

For an abelian surface \mathscr{S}/\mathbb{F}_p with characteristic polynomial $x^4 - a_1x^3 + a_2x^2 - pa_1x + p^2$, it is ordinary if $p \nmid a_2$. Since $|a_2| \leq 6p$, \mathscr{S} ordinary $\iff a_2/p \notin \{-6, \dots, 6\}$.

This step defines a function on the ℓ -adic monodromy group such that the density of ordinary primes is bounded below by the ratio of connected components on which this function is non-constant. (Chebotarev's density)

Strategy on Density of Ordinary Primes

- Study connected components of the *l*-adic monodromy group. The elliptic curve case follows from Serre's open image theorem.
 Sawin's result relies on the work of Fité-Kedlaya-Rotger-Sutherland (2012) on the Sato-Tate groups of abelian surfaces.
- For a Jacobian Jac(C)/L in the family

$$C: y^5 = x(x-1)(x-t),$$

because of its nontrivial endomorphism, for $p \neq 5$, it has two possible Newton polygon types, μ -ordinary and basic.

We define functions on Frobenius based on its image in $Gal(L(\zeta_5)/L)$ which assert μ -ordinary reduction.

Note that the ℓ -adic monodromy group is connected over $L(\zeta_5)$ and the Mumford–Tate Conjecture (Vasiu, 2008) holds. We conclude:

Theorem(CLMPT): The set of μ -ordinary primes has density 1.

Theorem (Elkies, 1987, 1989)

For every elliptic curve E/\mathbb{Q} (a large set of number fields), there exist infinitely many primes at which the reduction of E is supersingular.

Remark: Analogous results for certain abelian surfaces were obtained by Jao (2003), Sadykov (2004), and Baba-Grananth (2008).

Theorem (L.-Mantovan-Pries-Tang, in progress)

Let $C: y^5 = x(x-1)(x-t)$ be a smooth projective curve satisfying:

- $j_C := \frac{(t^2 t + 1)^3}{t^2(t 1)^2} \in \mathbb{Q} \cap [0, \frac{27}{4}];$
- the reduction of C at 5 is singular;

then there exist infinitely many basic primes of Jac(C).

Thank you for your attention !