# Joint distribution of primes in multiple short intervals 

Sun-Kai (Ken) Leung<br>Université de Montréal

Comparative Prime Number Theory Symposium 18 June 2024

## Outline

(1) Introduction

(2) Preliminaries

(3) Main results

## Section 1

## Introduction

## Origin

The study of primes in short intervals can be traced back to the late 18th century when the young prodigy Gauss examined tables of primes in search of patterns.

## Origin

The study of primes in short intervals can be traced back to the late 18th century when the young prodigy Gauss examined tables of primes in search of patterns.

In 1792, at the age of 15 , he made a guess that despite its fluctuations, roughly one in every $\log x$ integers is prime at around $x$, as observed from counting primes in intervals of length 1000 (chiliads). However, this prediction took more than a century to justify, which is now known as the Prime Number Theorem.

## Origin

The study of primes in short intervals can be traced back to the late 18th century when the young prodigy Gauss examined tables of primes in search of patterns.

In 1792, at the age of 15 , he made a guess that despite its fluctuations, roughly one in every $\log x$ integers is prime at around $x$, as observed from counting primes in intervals of length 1000 (chiliads). However, this prediction took more than a century to justify, which is now known as the Prime Number Theorem.

In his famous letter to Encke, Gauss counted primes in intervals of length 100 from 1 million to 3 million, and also compared $\pi(n+H)-\pi(n)$ and $\operatorname{Li}(n+H)-\operatorname{Li}(n)$ with $H=10^{5}$.

Chiliades.
B84 to 1 人

|  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 168 | 51 | 89 | 101 | 81 | 151 | 85 | 201 | 77 |  | 25 | 71 | 301 | 85 | 351 | 74 |  | 201 | 70 | 451 | 92 |
| 2 | 135 | 52 | 97 | 102 | 93 | 152 | 90 | 202 | 97 |  | 25 | 88 | 302 | 83 | 952 | so |  | 402 | 71 | 452 | 76 |
| 3 | 127 | 53 | 89 | 103 | 87 | 153 | 88 | 203 | 78 |  | 253 | 78 | 303 | 72 | 353 | 82 |  | 409 | 76 | 453 | 63 |
| 4 | 120 | 54 | 92 | 104 | 80 | 154 | 77 | 204 | 78 |  | $2 s 4$ | 81 | 904 | 84 | 354 | 76 |  | 404 | 75 | 454 | 72 |
| 5 | 14 g | 55 | go | 105 | 91 | 155 | 84 | 205 | 77 |  | 255 | 76 | 305 | 88 | 355 | 87 |  | 405 | 70 | 455 | 74 |
|  | 114 | 56 | 93 | 106 | 82 | 156 | 85 | 206 | 85 |  | 256 | 87 | 306 | 80 | 356 | 79 |  | 406 | 83 | 456 | 82 |
| 7 | 177 | 57 | 99 | 107 | 92 | 157 | 76 | 207 | 33 |  | 457 | 72 | 307 | 82 | 357 | 67 |  | 407 | 67 | 457 | 73 |
| 8 | 107 | 58 | 91 | 108 | 76 | 158 | 88 | 208 | 87 |  | 258 | 78 | 308 | 73 | 358 | 80 |  | 408 | 81 | 458 | 77 |
| 9 | Ho | 59 | 90 | 109 | 91 | 159 | $s_{7}$ | 209 | 8.5 |  | 259 | 86 | 309 | 76 | 359 | 83 |  | 409 | 79 | 459 | 75 |
| 10 | 112 | 60 | 94 | 110 | 88 | 160 | 85 | 210 | 88 |  | 260 | 761 | 310 | 80 | 36 | 71 |  | 410 | 82 | 460 | 68 |
| 1 | 106 | 61 | 88 | 'I' | 89 | 161 | 85 | $2 / 1$ | 2 |  | 2 | 77 | 311 | 79 | 361 | 68 |  | 411 | 73 | 46 | 77 |
| 12 | 103 | 62 | 87 | 12 | 84 | 162 | 84 | 212 | 86 |  | 162 | 73 | 312 | 69 | 362 | 79 |  | 412 | 81 | 462 | 69 |
| 13 | 109 | 63 | 88 | 113 | 81 | 163 | 81 | 213 | 6 g |  | 263 | 79 | 3.3 | 86 | 363 | 76 |  | 19 | 74 | 463 | 74 |
| 14 | 105 | 64 | 93 | 14 | 88 | 164 | 83 | 214 | S1 |  | 264 | 84 | 314 | 86 | 364 | 84 |  | 414 | 69 | 464 | 77 |
| 15 | 102 | 65 | 80 | 115 | 82 | 165 | 77 | 2/5 | 86 |  | 26 | 30 | 315 | 76 | 965 | 77 |  | 45 | 90 | 465 | 35 |
| 16 | 198 | 66 | 98 | 116 | 99 | 166 | so | 216 | 74 |  | 26 | 78 | 516 | 77 | 366 | 77 |  | 16 | 80 | 466 | 74 |
| 17 | $9^{8}$ | 67 | 84 | 117 | 81 | 167 | 81 | 217 | 76 |  | 167 | 87 | 917 | 84 | 367 | 85 |  | 17 | 67 | 467 | 69 |
| 18 | 104 | 68 | 99 | /18 | go | 168 | 83 | $2 / 8$ | so |  | 268 | 94. | 318 | 84 | 368 | 79 |  | 18 | 82 | 468 | 33 |
| 19 | 94 | 69 | 80 | 119 | 79 | 169 | 73 | (i) | 84 |  | 69 | 76 | 319 | 81 | 269 | 72 |  | 19 | 85 | 469 | 85 |
| 20 | 102 | 70 | 81 | 120 | 87 | 170 | 87 | 210 | 91 |  | 270 | 78 | 320 | 86 | 370 | 68 |  | 20 | 75 | 470 | 72 |
| 21 | 98 | 71 | 98 | 12, | 98 | 171 | 87 | 221 | 78 |  | 271 | 84 | 321 | 79 | 371 | 70 |  | 21 | 75 | 471 | 87 |
| 22 | 104 | 72 | 95 | 122 | 86 | 172 | 81 | 22 | 80 |  | 272 | 78 | 322 | 80 | 372 | 76 |  | 42 | 73 | 472 | 78 |
| 23 | 100 | 73 | 90 | 12.4 | 88 | 173 | 89 | 223 | $8 i$ |  | 273 | 83 | 323 | 81 | 373 | 81 |  | 23 | 77 | 47 | 73 |
| 24 | 104 | 74 | 83 | 124 | 48 | 174 | 79 | 224 | 36 |  | 74 | 71 | 334 | 71 | 374 | 73 |  | 24 | 83 | 474 | 78 |
| 25 | 94 | 75 | 92 | 125 | 83 | 175 | 83 | 25 | 93 |  | 275 | 80 | 325 | 87 | 275 | 92 |  | 2 | 81 | 475 | 80 |
| 26 | 98 | 76 | 91 | 126 | 84 | 176 | 75 | 126 | 84 |  | 276 | 83 | 326 | 85 | 376 | 85 |  | 46 | 74 | 476 | 86 |
| 27 | 101 | 77 | 83 | 127 | 83 | 177 | 95 | 227 | 76 |  | 777 | 83 | 327 | 73 | 377 | 80 |  | $2 J$ | 1 | 477 | 75 |
| 28 | 94 | 78 | 95 | 128 | 86 | 178 | 79 | 228 | 80 |  | 78 | 74 | 378 | 86 | 378 | 71 |  | 28 | 76 | 478 | 69 |
| 29 | 98 | 79 | 84 | 12.) | 89 | 179 | 89 | 229 | 8 |  | 179 | 81 | 329 | 73 | 379 | 77 |  | 29 | 71 | 479 | 85 |
| 30 | 92 | se | 91 | 130 | 83 | 180 | 94 | , | 88 |  | 880 | 73 | 33 C | 81 | 380 | 89 |  | 30 | 89 | 488 | 1 |
|  | 95 | 81 | 88 | 'si | 35 | 181 | 71 | 731 | 84 |  | 481 | 87 | 391 | 80 | 381 | 72 |  | 31 | 76 | 481 | 77 |
| 32 | 92 | 82. | 92 | 132 | 83 | 182 | 79 | 232 | 78 |  | 282 | 85 | 332 | 82 | 982 | 76 |  | 32 | 79 | 482 | 78 |
| 33 | 106 | 33 | 89 | 133 | 87 | 183 | 91 | 233 | 76 |  | 283 | 77 | 333 | 72 | 383 | 74 |  | 33 | 84 | 483 | 82 |
| 34 | 10 | 84 | 84 | 134 | 92 | 184 | 79 | 234 | 71 |  | 284 | 72 | 334 | 80 | 384 | 81 |  | 34 | 80 | 484 | 75 |
| 95 | 94 | 85 | 87 | 195 | 80 | 185 | 83 | 23 | 87 |  | 5 | 90 | 335 | 77 | 385 | 78 |  | 35 | 8.5 | 485 | 65 |
| 36 | 92 | 86 | 85 | 196 | 39 | 186 | 91 | 236 | 73 |  | 286 | 77 | ${ }^{336}$ | 77 |  | 80 |  | 36 | 52 | 486 | 63 |
| 37 | 99 | 87 | 88 | 137 | 96 | 137 | 79 | 237 | 76 |  | 287 | 71 | 337 | 84 | 387 | 78 |  | 43 | 73 | 487 | 82 |
| 38 | 94 | 58 | 93 | 138 | 80 | 188 | 87 | 738 | 73 |  | 288 | 71 | 338 | 80 | 388 | 69 |  | 438 | 70 | 488 | 78 |
| 39 | 90 | 89 | 76 | 139 | 85 | 189 | 80 | 239 | 87 |  | 289 | 85 | 339 | 77 | 3 Pg | 75 |  | 39 | 75 | 489 | 83 |
| 40 | 96 | 90 | 94 | 140 | 84 | 190 | 88 | , | 79 |  | 290 | 84 | 340 | 68 | 390 | 84 |  | , | 75 | 490 | 78 |
| 41 | 88 | 91 | 89 | 141 | 87 | 191 | 75 | 241 | 50 |  | t9 | 84 | 341 | 84 | 391 | 81 |  | 4 | 79 | 491 | 78 |
| 42 | 101 | 92 | 85 | 142 | 87 | 192 | 85 | 242 | 91 |  | 292 | 77 | 342 | 77 | 392. | 79 |  | 42 | 72 | 492 | 76 |
| 4 | 102 | 93 |  | 143 | 82 | 193 | 89 | 14, 3 | 76 |  | 293 | 78 | 343 | 77 | 593 | 86 |  | 43 | 85 | $49^{3}$ | 67 |
| 44 | 85 | 94 | 86 | 44 | 77 | 194 | 84 | 244 | 77 |  | 294 | 68 | 344 | 80 | 39.4 | 87 |  | 44 | 58 | 494 | 82. |
| 45 | 96 | 95 | 87 | 145 | 79 | 195 | 74 | 245 | 78 |  | 25 | 85 | 944 5 | 80 | 395 | 75 |  | 45 | 5 | 495 | 80 |
| 46 | 86 | 96 | $9^{5}$ | 146 | 85 | 196 | 85 | 246 | 80 |  | 296 | 75 | 346 | 76 | 396 | 72 |  | 40 | 68 | 496 | 87 |
| 47 | 90 | 97 | 84 | 147 | 84 |  | 76 | 247 | 84 |  | 297 | ${ }_{8}^{82}$ | 347 | 80 | 397 | 75 |  | 47 | 68 | 497 | 68 |
| 48 | 95 | 98 | 82 | 148 | 83 | 198 | 87 | 248 | 79 |  | vgs | 73 | 348 | 82 | 398 | 75 |  | 48 | 73 | 498 | 81 |
| 49 | 89 | 99 | 87 | 149 | 83 | 199 | 96 | 149 | 88 |  | 299 | 73 | 349 | 72 | 397 | 82 |  | 49 | 70 | 499 | 72 |
| So | 98 | 100 | 87 | 150 | 91 | 200 | 77 | 250 | 80 |  | 300 | 78 | 350 | 82 | 400 | 81 |  | 4 | 80 | 500 | 81 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

R Mimathen
von 1000000 bis 1100000 .


## Mean and variance

Applying the prime number theorem, the mean of $\psi(n+H)-\psi(n)$ for $n \in[1, N]$ is

$$
\frac{1}{N} \sum_{n \leqslant N}(\psi(n+H)-\psi(n)) \sim H
$$

provided that $H=o(N)$ as $N \rightarrow \infty$.

## Mean and variance

Applying the prime number theorem, the mean of $\psi(n+H)-\psi(n)$ for $n \in[1, N]$ is

$$
\frac{1}{N} \sum_{n \leqslant N}(\psi(n+H)-\psi(n)) \sim H
$$

provided that $H=o(N)$ as $N \rightarrow \infty$.
In 1973, Goldston and Montgomery showed that the variance of $\psi(n+H)-\psi(n)$ for $n \in[1, N]$ is $\sim H \log \frac{N}{H}$ in the range of $H \in\left[N^{\epsilon}, N^{1-\epsilon}\right]$ under the Riemann hypothesis (RH) and the strong pair correlation conjecture.

## Higher moments and normality

In 2004, by computing higher moments under a uniform Hardy-Littlewood prime k-tuple conjecture, Montgomery and Soundararajan showed that the distribution of $\psi(n+H)-\psi(n)$ for $n \in[1, N]$ is approximately normal with mean $\sim H$ and variance $\sim H \log \frac{N}{H}$, provided that $\frac{H}{\log N} \rightarrow \infty$ and $\frac{\log H}{\log N} \rightarrow 0$ as $N \rightarrow \infty$.

## Higher moments and normality

In 2004, by computing higher moments under a uniform Hardy-Littlewood prime k-tuple conjecture, Montgomery and Soundararajan showed that the distribution of $\psi(n+H)-\psi(n)$ for $n \in[1, N]$ is approximately normal with mean $\sim H$ and variance $\sim H \log \frac{N}{H}$, provided that $\frac{H}{\log N} \rightarrow \infty$ and $\frac{\log H}{\log N} \rightarrow 0$ as $N \rightarrow \infty$.

They further conjectured that in the range of $H \in\left[(\log N)^{1+\delta}, N^{1-\delta}\right]$, the distribution remains to be normal.

## Rubinstein-Sarnak approach

In this paper, we revisit the "Fourier side". However, rather than relying on the analytic nature of the pair correlation conjecture, we adapt the method of Rubinstein and Sarnak and assume the linear independence over $\mathbb{Q}$ of the positive ordinates of nontrivial zeros (LI), which is an algebraic assumption.

## Rubinstein-Sarnak approach

In this paper, we revisit the "Fourier side". However, rather than relying on the analytic nature of the pair correlation conjecture, we adapt the method of Rubinstein and Sarnak and assume the linear independence over $\mathbb{Q}$ of the positive ordinates of nontrivial zeros (LI), which is an algebraic assumption.

Given a large $X$ and $x \in[2, X]$. As we will see, for $h=h(x)=\delta x$, where $\delta>0$ is small but independent of $X$, which is beyond the conjectural range of Montgomery and Soundararajan above, the distribution of $\psi(x+h)-\psi(x)$ for $x \in[2, X]$ (in logarithmic scale) remains to be Gaussian under RH and LI.

## Primes in two neighbouring intervals

Furthermore, one may ask: What is the joint distribution of the weighted prime counts in two neighbouring intervals? Are they independent? If not, how are they correlated?

## Primes in two neighbouring intervals

Furthermore, one may ask: What is the joint distribution of the weighted prime counts in two neighbouring intervals? Are they independent? If not, how are they correlated?

In fact, we show that assuming RH and LI , the weighted count $(\psi(x)-\psi(x-h), \psi(x+h)-\psi(x))$ for $x \in[2, X]$ (in logarithmic scale) is approximately bivariate Gaussian with a weak negative correlation.

## Primes in two neighbouring intervals

Furthermore, one may ask: What is the joint distribution of the weighted prime counts in two neighbouring intervals? Are they independent? If not, how are they correlated?

In fact, we show that assuming RH and LI , the weighted count $(\psi(x)-\psi(x-h), \psi(x+h)-\psi(x))$ for $x \in[2, X]$ (in logarithmic scale) is approximately bivariate Gaussian with a weak negative correlation.

More generally, we show that the weighted count of primes in multiple disjoint short intervals has a multivariate Gaussian (logarithmic) limiting distribution with a weak negative correlation under RH and LI.

In the case of two neighbouring intervals, we have:

## Corollary

Assume RH and LI. Given a Borel subset $B \subseteq \mathbb{R}^{2}$, define
$S_{X, \delta ; B}:=\left\{x \in[2, X]: \frac{(\psi(x)-\psi(x-\delta x)-\delta x, \psi(x+\delta x)-\psi(x)-\delta x)}{\sqrt{\left(\delta \log \frac{1}{\delta}+(1-\gamma-\log 2 \pi) \delta\right) x}} \in B\right\}$.

In the case of two neighbouring intervals, we have:

## Corollary

Assume RH and LI. Given a Borel subset $B \subseteq \mathbb{R}^{2}$, define
$S_{X, \delta ; B}:=\left\{x \in[2, X]: \frac{(\psi(x)-\psi(x-\delta x)-\delta x, \psi(x+\delta x)-\psi(x)-\delta x)}{\sqrt{\left(\delta \log \frac{1}{\delta}+(1-\gamma-\log 2 \pi) \delta\right)}} \in B\right\}$.
Then as $\delta \rightarrow 0^{+}$, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{\log X} \int_{S_{X, \delta ; B}} \frac{d x}{x}=\frac{1}{2 \pi \sqrt{\operatorname{det} \mathcal{C}}} \int_{B} \exp \left(-\frac{1}{2}\left\langle\mathcal{C}^{-1} \boldsymbol{x}, \boldsymbol{x}\right\rangle\right) d \boldsymbol{x}+O\left(\frac{1}{\log ^{2} \frac{1}{\delta}}\right)
$$

with the covariance matrix

$$
\mathcal{C}=\left(\begin{array}{cc}
1 & -\frac{\log 2}{\log \frac{1}{\delta}} \\
-\frac{\log 2}{\log \frac{1}{\delta}} & 1
\end{array}\right) .
$$

## Section 2

## Preliminaries

## Normalized deviation

Given an integer $r \geqslant 1$, real numbers $x \geqslant 2, \delta>0$ and a vector $\boldsymbol{t} \in \mathbb{R}^{r}$, we denote by $\boldsymbol{E}(x ; \delta, \boldsymbol{t})$ the $r$-tuple $\left(E\left(x ; \delta, t_{1}\right), \ldots, E\left(x ; \delta, t_{r}\right)\right)$, where

$$
E(x ; \delta, t):=\frac{1}{\sqrt{x}}\left[\psi\left((1+t \delta) x+\frac{1}{2} \delta x\right)-\psi\left((1+t \delta) x-\frac{1}{2} \delta x\right)-\delta x\right]
$$

i.e. the normalized deviation of the weighted prime count in the short interval of length $\delta x$ centred at $(1+t \delta) x$.

## Normalized deviation

Given an integer $r \geqslant 1$, real numbers $x \geqslant 2, \delta>0$ and a vector $\boldsymbol{t} \in \mathbb{R}^{r}$, we denote by $\boldsymbol{E}(x ; \delta, \boldsymbol{t})$ the $r$-tuple $\left(E\left(x ; \delta, t_{1}\right), \ldots, E\left(x ; \delta, t_{r}\right)\right)$, where

$$
E(x ; \delta, t):=\frac{1}{\sqrt{x}}\left[\psi\left((1+t \delta) x+\frac{1}{2} \delta x\right)-\psi\left((1+t \delta) x-\frac{1}{2} \delta x\right)-\delta x\right]
$$

i.e. the normalized deviation of the weighted prime count in the short interval of length $\delta x$ centred at $(1+t \delta) x$.

To simplify our discussion, we always assume that

- $T:=\max _{j=1, \ldots, r}\left|t_{j}\right| \leqslant \delta^{-\frac{1}{10}}$, i.e. the intervals are not too spread out;
- $\left|t_{j}-t_{k}\right| \geqslant 1$ whenever $j \neq k$, i.e. the intervals are disjoint.


## Logarithmic limiting distribution

Let $\boldsymbol{Y}(x)$ be a $\mathbb{R}^{r}$-valued function. We say that $\boldsymbol{Y}(x)$ has a logarithmic limiting distribution $\mu$ on $\mathbb{R}^{r}$ if

$$
\begin{aligned}
\mathbb{E}_{x}^{\log }[f(\boldsymbol{Y}(x))] & :=\lim _{x \rightarrow \infty} \frac{1}{\log X} \int_{2}^{X} f(\boldsymbol{Y}(x)) \frac{d x}{x} \\
& =\int_{\mathbb{R}^{r}} f(\boldsymbol{y}) d \mu(\boldsymbol{y})
\end{aligned}
$$

for all bounded continuous functions $f$ on $\mathbb{R}^{r}$, i.e. (logarithmic) time average equals space average.

## Logarithmic limiting distribution

Let $\boldsymbol{Y}(x)$ be a $\mathbb{R}^{r}$-valued function. We say that $\boldsymbol{Y}(x)$ has a logarithmic limiting distribution $\mu$ on $\mathbb{R}^{r}$ if

$$
\begin{aligned}
\mathbb{E}_{x}^{\log }[f(\boldsymbol{Y}(x))] & :=\lim _{x \rightarrow \infty} \frac{1}{\log X} \int_{2}^{X} f(\boldsymbol{Y}(x)) \frac{d x}{x} \\
& =\int_{\mathbb{R}^{r}} f(\boldsymbol{y}) d \mu(\boldsymbol{y})
\end{aligned}
$$

for all bounded continuous functions $f$ on $\mathbb{R}^{r}$, i.e. (logarithmic) time average equals space average.

If such a measure $\mu$ exists, then given a Borel subset $B \subseteq \mathbb{R}^{r}$, we shall represent $\mu(B)$ by

$$
\mathbb{P}_{x}^{\log }(\boldsymbol{Y}(x) \in B):=\mathbb{E}_{x}^{\log }\left[1_{B}(\boldsymbol{Y}(x))\right]
$$

where $1_{B}(\boldsymbol{x})$ is the indicator function of the Borel subset $B$.

Given a non-trivial zero $\rho=\frac{1}{2}+i \gamma$, we define

$$
w(\rho)=w(\rho ; \delta, t):=\frac{1}{s}\left[\left(1+\left(t+\frac{1}{2}\right) \delta\right)^{\rho}-\left(1+\left(t-\frac{1}{2}\right) \delta\right)^{\rho}\right] .
$$

Given a non-trivial zero $\rho=\frac{1}{2}+i \gamma$, we define

$$
w(\rho)=w(\rho ; \delta, t):=\frac{1}{s}\left[\left(1+\left(t+\frac{1}{2}\right) \delta\right)^{\rho}-\left(1+\left(t-\frac{1}{2}\right) \delta\right)^{\rho}\right] .
$$

## Proposition

Let $r \geqslant 1, \delta>0$ and $\boldsymbol{t} \in \mathbb{R}^{r}$ be fixed. Assume RH and LI. Then $\boldsymbol{E}(x ; \delta, \boldsymbol{t})$ has a logarithmic limiting distribution $\mu_{\delta, \boldsymbol{t}}$ on $\mathbb{R}^{r}$ corresponding to the $\mathbb{R}^{r}$-valued random vector $\boldsymbol{X}_{\delta, \boldsymbol{t}}=\left(X_{\delta, t_{1}}, \ldots, X_{\delta, t_{r}}\right)$, where

$$
X_{\delta, t}:=\operatorname{Re}\left(2 \sum_{\gamma>0} w(\rho) U_{\gamma}\right)
$$

with $\left\{U_{\gamma}\right\}_{\gamma>0}$ being a sequence of independent random variables uniformly distributed on the unit circle $\mathbb{T}$.

Given a non-trivial zero $\rho=\frac{1}{2}+i \gamma$, we define

$$
w(\rho)=w(\rho ; \delta, t):=\frac{1}{s}\left[\left(1+\left(t+\frac{1}{2}\right) \delta\right)^{\rho}-\left(1+\left(t-\frac{1}{2}\right) \delta\right)^{\rho}\right] .
$$

## Proposition

Let $r \geqslant 1, \delta>0$ and $\boldsymbol{t} \in \mathbb{R}^{r}$ be fixed. Assume RH and LI. Then $\boldsymbol{E}(x ; \delta, \boldsymbol{t})$ has a logarithmic limiting distribution $\mu_{\delta, \boldsymbol{t}}$ on $\mathbb{R}^{r}$ corresponding to the $\mathbb{R}^{r}$-valued random vector $\boldsymbol{X}_{\delta, \boldsymbol{t}}=\left(X_{\delta, t_{1}}, \ldots, X_{\delta, t_{r}}\right)$, where

$$
X_{\delta, t}:=\operatorname{Re}\left(2 \sum_{\gamma>0} w(\rho) U_{\gamma}\right)
$$

with $\left\{U_{\gamma}\right\}_{\gamma>0}$ being a sequence of independent random variables uniformly distributed on the unit circle $\mathbb{T}$. Moreover, the covariance matrix of $\boldsymbol{X}_{\delta, t}$ is real symmetric with the $(j, k)$-entry being

$$
\operatorname{Cov}_{j k}=\operatorname{Cov}_{j k}(\delta, \boldsymbol{t}):=\sum_{\gamma} w_{j}(\rho) \overline{w_{k}(\rho)}
$$

## Covariance

## Recall that

$$
\operatorname{Cov}_{j k}=\operatorname{Cov}_{j k}(\delta, \boldsymbol{t}):=\sum_{\gamma} w_{j}(\rho) \overline{w_{k}(\rho)} .
$$

## Covariance

Recall that

$$
\operatorname{Cov}_{j k}=\operatorname{Cov}_{j k}(\delta, \boldsymbol{t}):=\sum_{\gamma} w_{j}(\rho) \overline{w_{k}(\rho)} .
$$

## Proposition

Assume RH and LI. Then as $\delta \rightarrow 0^{+}$, we have

$$
\operatorname{Cov}_{j k}= \begin{cases}\delta \log \frac{1}{\delta}+(1-\gamma-\log 2 \pi) \delta+O\left(\left(T \delta \log \frac{1}{\delta}\right)^{2}\right) & \text { if } j=k \\ -\Delta\left(\left|t_{j}-t_{k}\right|\right) \delta+O\left(\left(T \delta \log \frac{1}{\delta}\right)^{2}\right) & \text { if } j \neq k\end{cases}
$$

where

$$
\Delta(t):=\frac{1}{2}((t+1) \log (t+1)-2 t \log t+(t-1) \log (t-1)),
$$

i.e. the second order central difference of the function $f(t)=\frac{1}{2} t \log t$.

The appearance of the secondary term $(1-\gamma-\log 2 \pi) \delta$ is expected as the variance computed by Montgomery and Soundararajan is

$$
\frac{1}{X} \int_{1}^{X}(\psi(x+H)-\psi(x)-H)^{2} d x \sim H \log \frac{X}{H}-(\gamma+\log 2 \pi) H
$$

for $X^{\epsilon} \leqslant H \leqslant X^{1-\epsilon}$ under a uniform Hardy-Littlewood prime $k$-tuple conjecture.

The appearance of the secondary term $(1-\gamma-\log 2 \pi) \delta$ is expected as the variance computed by Montgomery and Soundararajan is

$$
\frac{1}{X} \int_{1}^{X}(\psi(x+H)-\psi(x)-H)^{2} d x \sim H \log \frac{X}{H}-(\gamma+\log 2 \pi) H
$$

for $X^{\epsilon} \leqslant H \leqslant X^{1-\epsilon}$ under a uniform Hardy-Littlewood prime $k$-tuple conjecture. Besides, Tsz Ho Chan derived the same expression under a refined strong pair correlation conjecture.

The appearance of the secondary term $(1-\gamma-\log 2 \pi) \delta$ is expected as the variance computed by Montgomery and Soundararajan is

$$
\frac{1}{X} \int_{1}^{X}(\psi(x+H)-\psi(x)-H)^{2} d x \sim H \log \frac{X}{H}-(\gamma+\log 2 \pi) H
$$

for $X^{\epsilon} \leqslant H \leqslant X^{1-\epsilon}$ under a uniform Hardy-Littlewood prime $k$-tuple conjecture. Besides, Tsz Ho Chan derived the same expression under a refined strong pair correlation conjecture.

Note that $\Delta(1)=\log 2$ and $\Delta\left(\left|t_{j}-t_{k}\right|\right)>0$ in general. Also, as $\left|t_{j}-t_{k}\right| \rightarrow \infty$, we have $\Delta\left(\left|t_{j}-t_{k}\right|\right) \rightarrow 0^{+}$monotonically and more precisely, $\Delta\left(\left|t_{j}-t_{k}\right|\right) \sim \frac{1}{2\left|t_{j}-t_{k}\right|}$, i.e. "Coulomb's law".

The appearance of the secondary term $(1-\gamma-\log 2 \pi) \delta$ is expected as the variance computed by Montgomery and Soundararajan is

$$
\frac{1}{X} \int_{1}^{X}(\psi(x+H)-\psi(x)-H)^{2} d x \sim H \log \frac{X}{H}-(\gamma+\log 2 \pi) H
$$

for $X^{\epsilon} \leqslant H \leqslant X^{1-\epsilon}$ under a uniform Hardy-Littlewood prime $k$-tuple conjecture. Besides, Tsz Ho Chan derived the same expression under a refined strong pair correlation conjecture.

Note that $\Delta(1)=\log 2$ and $\Delta\left(\left|t_{j}-t_{k}\right|\right)>0$ in general. Also, as $\left|t_{j}-t_{k}\right| \rightarrow \infty$, we have $\Delta\left(\left|t_{j}-t_{k}\right|\right) \rightarrow 0^{+}$monotonically and more precisely, $\Delta\left(\left|t_{j}-t_{k}\right|\right) \sim \frac{1}{2\left|t_{j}-t_{k}\right|}$, i.e. "Coulomb's law".

Therefore, primes in disjoint short intervals repelled each other, albeit very weakly. Moreover, the larger the gap between the intervals, the weaker the repulsion.

## Section 3

## Main results

## Statement

In view of our first proposition, we shall state our main theorems in terms of the renormalized deviation

$$
\widetilde{\boldsymbol{E}}(x ; \delta, \boldsymbol{t}):=\left(\frac{E\left(x ; \delta, t_{1}\right)}{\sqrt{V_{1}}}, \ldots, \frac{E\left(x ; \delta, t_{r}\right)}{\sqrt{V_{r}}}\right),
$$

where $V_{j}:=\operatorname{Cov}_{j j}$ for $j=1, \ldots, r$.

## Statement

In view of our first proposition, we shall state our main theorems in terms of the renormalized deviation

$$
\widetilde{\boldsymbol{E}}(x ; \delta, \boldsymbol{t}):=\left(\frac{E\left(x ; \delta, t_{1}\right)}{\sqrt{V_{1}}}, \ldots, \frac{E\left(x ; \delta, t_{r}\right)}{\sqrt{V_{r}}}\right)
$$

where $V_{j}:=\operatorname{Cov}_{j j}$ for $j=1, \ldots, r$.

## Theorem

Assume RH and LI. Given a small $\delta>0$ and an integer $1 \leqslant r \leqslant \frac{\log 1 / \delta}{\log \log 1 / \delta}$. Let $B \subseteq \mathbb{R}^{r}$ be a Borel subset. Then as $\delta \rightarrow 0^{+}$, the total variation distance

$$
\sup _{B \subseteq \mathbb{R}^{r}: B \text { Borel }}\left|\mathbb{P}_{x}^{\log }(\widetilde{\boldsymbol{E}}(x ; \delta, \boldsymbol{t}) \in B)-\mathbb{P}(\mathcal{N}(\mathbf{0}, \mathcal{C}) \in B)\right|<_{r, T} \delta\left(\log \frac{1}{\delta}\right)^{\frac{r}{2}-1}
$$

where $\mathcal{N}(\mathbf{0}, \mathcal{C})$ is an r-dimensional Gaussian random variable with mean $\mathbf{0}$ and covariance matrix $\mathcal{C}=\left(c_{j k}\right)_{1 \leqslant j, k \leqslant r}$ and

$$
c_{j k}=c_{j k}(\delta, \boldsymbol{t}):=\frac{\operatorname{Cov}_{j k}}{\sqrt{V_{j} V_{k}}}=-\frac{\Delta\left(\left|t_{j}-t_{k}\right|\right)}{\log \frac{1}{\delta}}+O_{r, T}\left(\frac{1}{\log ^{2} \frac{1}{\delta}}\right)
$$

for $1 \leqslant j, k \leqslant r$.

## Shanks-Rényi prime number race

In 1853, Chebyshev noted that on a fine scale there seem to be more primes congruent to 3 than to 1 modulo 4 , which is now known as the Chebyshev's bias. This observation led to the birth of comparative prime number theory, which investigates the discrepancies in the distribution of prime numbers.

## Shanks-Rényi prime number race

In 1853, Chebyshev noted that on a fine scale there seem to be more primes congruent to 3 than to 1 modulo 4 , which is now known as the Chebyshev's bias. This observation led to the birth of comparative prime number theory, which investigates the discrepancies in the distribution of prime numbers.

A central problem is the so-called "Shanks-Rényi prime number race. Let $q \geqslant 3$ and $2 \leqslant r \leqslant \varphi(q)$ be positive integers, and denote by $\mathcal{A}_{r}(q)$ the set of ordered $r$-tuples $\left(a_{1}, \ldots, a_{r}\right)$ of distinct residue classes that are coprime to $q$. Is it true that for any $\left(a_{1}, \ldots, a_{r}\right) \in \mathcal{A}_{r}(q)$, we will have the ordering

$$
\pi\left(x ; q, a_{1}\right)>\pi\left(x ; q, a_{2}\right)>\cdots>\pi\left(x ; q, a_{r}\right)
$$

for infinitely many integers $x$ ?

## Shanks-Rényi prime number race

In 1853, Chebyshev noted that on a fine scale there seem to be more primes congruent to 3 than to 1 modulo 4 , which is now known as the Chebyshev's bias. This observation led to the birth of comparative prime number theory, which investigates the discrepancies in the distribution of prime numbers.

A central problem is the so-called "Shanks-Rényi prime number race. Let $q \geqslant 3$ and $2 \leqslant r \leqslant \varphi(q)$ be positive integers, and denote by $\mathcal{A}_{r}(q)$ the set of ordered $r$-tuples $\left(a_{1}, \ldots, a_{r}\right)$ of distinct residue classes that are coprime to $q$. Is it true that for any $\left(a_{1}, \ldots, a_{r}\right) \in \mathcal{A}_{r}(q)$, we will have the ordering

$$
\pi\left(x ; q, a_{1}\right)>\pi\left(x ; q, a_{2}\right)>\cdots>\pi\left(x ; q, a_{r}\right)
$$

for infinitely many integers $x$ ?
Assuming GRH and GLI, Rubinstein and Sarnak showed that this has a positive (logarithmic) density, denoted by $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$.

Question. Do all orderings of the $\pi\left(x ; q, a_{i}\right)$ 's occur with approximately the same (logarithmic) density, which is $1 / r$ !?

Question. Do all orderings of the $\pi\left(x ; q, a_{i}\right)$ 's occur with approximately the same (logarithmic) density, which is $1 / r!$ ?

For small $q$, this is the aforementioned Chebyshev bias. As $q \rightarrow \infty$, however, Rubinstein and Sarnak proved conditionally that any biases dissolve, as long as the number of contestants $r$ is fixed.

Question. Do all orderings of the $\pi\left(x ; q, a_{i}\right)$ 's occur with approximately the same (logarithmic) density, which is $1 / r$ !?

For small $q$, this is the aforementioned Chebyshev bias. As $q \rightarrow \infty$, however, Rubinstein and Sarnak proved conditionally that any biases dissolve, as long as the number of contestants $r$ is fixed.

Question. What happens when $r$ is sufficiently large in terms of $q$ ?

Question. Do all orderings of the $\pi\left(x ; q, a_{i}\right)$ 's occur with approximately the same (logarithmic) density, which is $1 / r!$ ?

For small $q$, this is the aforementioned Chebyshev bias. As $q \rightarrow \infty$, however, Rubinstein and Sarnak proved conditionally that any biases dissolve, as long as the number of contestants $r$ is fixed.

Question. What happens when $r$ is sufficiently large in terms of $q$ ?
Theorem (Harper-Lamzouri, 2018; Ford-Harper-Lamzouri, 2019)
Let $\epsilon>0$ be small and $q$ be sufficiently large.

- (Uniformly for small $r$ ) If $r \leqslant \log q /(\log \log q)^{4}$, then uniformly for all n-tuples $\left(a_{1}, \ldots, a_{r}\right) \in \mathcal{A}_{r}(q)$, we have $\delta\left(q ; a_{1}, \ldots, a_{r}\right) \sim 1 / r!$ as $q \rightarrow \infty$.
- (Biases for large r) If $r / \log q \rightarrow \infty$ as $q \rightarrow \infty$, then there exists $n$-tuples $\left(a_{1}, \ldots, a_{r}\right),\left(b_{1}, \ldots, b_{r}\right) \in \mathcal{A}_{r}(q)$ for which $r!\cdot \delta\left(q ; a_{1}, \ldots, a_{r}\right) \rightarrow 0$ and $r!\cdot \delta\left(q ; b_{1}, \ldots, b_{r}\right) \rightarrow \infty$.


## Many intervals

To simply notation, let us denote

$$
\rho(\delta ; \boldsymbol{t}):=\mathbb{P}_{x}^{\log }\left(\widetilde{E}\left(x ; \delta, t_{1}\right)>\widetilde{E}\left(x ; \delta, t_{2}\right)>\cdots>\widetilde{E}\left(x ; \delta, t_{r}\right)\right) .
$$

When the number of intervals $r$ is not necessarily bounded as $\delta \rightarrow 0^{+}$, we have the following short-interval analog of a result by Harper-Lamzouri.

## Many intervals

To simply notation, let us denote

$$
\rho(\delta ; \boldsymbol{t}):=\mathbb{P}_{x}^{\log }\left(\widetilde{E}\left(x ; \delta, t_{1}\right)>\widetilde{E}\left(x ; \delta, t_{2}\right)>\cdots>\widetilde{E}\left(x ; \delta, t_{r}\right)\right) .
$$

When the number of intervals $r$ is not necessarily bounded as $\delta \rightarrow 0^{+}$, we have the following short-interval analog of a result by Harper-Lamzouri.

## Corollary

Assume RH and LI. Given a small $\delta>0$ and an integer $1 \leqslant r \leqslant \frac{\log 1 / \delta}{\log \log 1 / \delta}$. Then as $\delta \rightarrow 0^{+}$, we have

$$
\rho(\delta ; \boldsymbol{t})=\frac{1}{r!}\left(1+O\left(\frac{r \log 2 r}{\log \frac{1}{\delta}}\right)\right)
$$

i.e. all $r$-way prime number races remain asymptotically unbiased as long as $r=o\left(\frac{\log 1 / \delta}{\log \log 1 / \delta}\right)$.

## Sharp phase transition

When $r \asymp \frac{\log 1 / \delta}{\log \log 1 / \delta}$, however, it turns out there exist $r$ intervals such that the corresponding prime number race is noticeably biased.

## Sharp phase transition

When $r \asymp \frac{\log 1 / \delta}{\log \log 1 / \delta}$, however, it turns out there exist $r$ intervals such that the corresponding prime number race is noticeably biased.

## Corollary

Assume RH and LI. Given a small $\delta>0$ and an integer $\frac{\log 1 / \delta}{\log \log 1 / \delta} \ll r \leqslant \frac{\log 1 / \delta}{\log \log 1 / \delta}$. Then there exist an absolute constant $\eta_{0}>0$ and $\boldsymbol{t} \in \mathbb{R}^{r}$ such that as $\delta \rightarrow 0^{+}$, we have

$$
\rho(\delta ; \boldsymbol{t}) \leqslant \exp \left(-\eta_{0} \times \frac{r \log \log \frac{1}{\delta}}{\log \frac{1}{\delta}}\right) \frac{1}{r!} .
$$

## Sharp phase transition

When $r \asymp \frac{\log 1 / \delta}{\log \log 1 / \delta}$, however, it turns out there exist $r$ intervals such that the corresponding prime number race is noticeably biased.

## Corollary

Assume RH and LI. Given a small $\delta>0$ and an integer $\frac{\log 1 / \delta}{\log \log 1 / \delta} \ll r \leqslant \frac{\log 1 / \delta}{\log \log 1 / \delta}$. Then there exist an absolute constant $\eta_{0}>0$ and $\boldsymbol{t} \in \mathbb{R}^{r}$ such that as $\delta \rightarrow 0^{+}$, we have

$$
\rho(\delta ; \boldsymbol{t}) \leqslant \exp \left(-\eta_{0} \times \frac{r \log \log \frac{1}{\delta}}{\log \frac{1}{\delta}}\right) \frac{1}{r!} .
$$

Problem. When $r \asymp \frac{\log 1 / \delta}{\log \log 1 / \delta}$, is it possible to generate a positive bias, i.e.

$$
\rho\left(\delta ; \boldsymbol{t}^{\prime}\right) \geqslant \exp \left(+\eta_{0}^{\prime} \times \frac{r \log \log \frac{1}{\delta}}{\log \frac{1}{\delta}}\right) \frac{1}{r!} ?
$$

Informal Conclusion. Weighted prime counts in multiple short intervals behave as if they are jointly normally distributed point charges.

Thank you for your attention!

