Orienteering on Supersingular Isogeny Volcanoes Using One Endomorphism

Renate Scheidler

Joint work with Sarah Arpin, Mingjie Chen, Kristin E. Lauter, Katherine E. Stange and Ha T. N Tran (thanks to *Women in Numbers* 5)

Number Theory and Combinatorics Seminar University of Lethbridge March 13, 2023

Let the Adventure Begin ...

(U Calgary)

Let the Adventure Begin ...

(U Calgary)

Orienteering

Finding one's way across to checkpoints across varied terrain using only map and compass.

Let the Adventure Begin ...

Orienteering

Finding one's way across to checkpoints across varied terrain using only map and compass.

ullet Our terrain: oriented supersingular ℓ -isogeny volcano

- Our wayfinding tool: one endomorphism
- Our task: get to a given elliptic curve (which we may or may not reach)

Let E/\mathbb{F}_q be an elliptic curve $(q = p^n \text{ with } p \text{ prime})$.

(U Calgary)

Let E/\mathbb{F}_q be an elliptic curve $(q = p^n \text{ with } p \text{ prime})$.

The points on E (over any extension of \mathbb{F}_q) form a finite abelian group under "cord & tangent" addition:

(U Calgary)

Let E/\mathbb{F}_q be an elliptic curve $(q = p^n \text{ with } p \text{ prime})$.

The points on E (over any extension of \mathbb{F}_q) form a finite abelian group under "cord & tangent" addition:

Isogeny: non-trivial group homomorphism between elliptic curves;

Let E/\mathbb{F}_q be an elliptic curve $(q = p^n \text{ with } p \text{ prime})$.

The points on E (over any extension of \mathbb{F}_q) form a finite abelian group under "cord & tangent" addition:

Isogeny: non-trivial group homomorphism between elliptic curves;

Degree of an isogeny φ : degree as an algebraic map

Let E/\mathbb{F}_q be an elliptic curve $(q = p^n \text{ with } p \text{ prime})$.

The points on E (over any extension of \mathbb{F}_q) form a finite abelian group under "cord & tangent" addition:

Isogeny: non-trivial group homomorphism between elliptic curves;

Degree of an isogeny φ : degree as an algebraic map

• If $p \nmid \deg(\varphi)$, then $\deg(\varphi) = \# \ker(\varphi)$

Let E/\mathbb{F}_q be an elliptic curve $(q = p^n \text{ with } p \text{ prime})$.

The points on E (over any extension of \mathbb{F}_q) form a finite abelian group under "cord & tangent" addition:

Isogeny: non-trivial group homomorphism between elliptic curves;

Degree of an isogeny φ : degree as an algebraic map

- If $p \nmid \deg(\varphi)$, then $\deg(\varphi) = \# \ker(\varphi)$
- Every subgroup $G \subset E(\mathbb{F}_q)$ is the kernel of such an isogeny, computable via Vélu's formulas (Vélu 1971)

Isogeny Path Finding

Isogeny Path Finding Problem

Given a set \mathcal{L} of primes (small, distinct from p) and two elliptic curves E, E' over \mathbb{F}_q , find an \mathcal{L} -isogeny path from E to E',

Isogeny Path Finding

Isogeny Path Finding Problem

Given a set \mathcal{L} of primes (small, distinct from p) and two elliptic curves E, E' over \mathbb{F}_a , find an \mathcal{L} -isogeny path from E to E', i.e. a sequence

$$\rho: E = E_0 \xrightarrow{\varphi_1} E_1 \xrightarrow{\varphi_2} E_2 \xrightarrow{\varphi_3} \cdots \xrightarrow{\varphi_m} E_m = E'$$

of isogenies with $deg(\varphi_i) \in \mathcal{L}$ for $1 \leq i \leq m$.

Isogeny Path Finding

Isogeny Path Finding Problem

Given a set \mathcal{L} of primes (small, distinct from p) and two elliptic curves E, E' over \mathbb{F}_a , find an \mathcal{L} -isogeny path from E to E', i.e. a sequence

$$\rho: E = E_0 \xrightarrow{\varphi_1} E_1 \xrightarrow{\varphi_2} E_2 \xrightarrow{\varphi_3} \cdots \xrightarrow{\varphi_m} E_m = E'$$

of isogenies with $deg(\varphi_i) \in \mathcal{L}$ for $1 \leq i \leq m$.

Questions

- How hard is this problem computationally?
- How do we solve it?

Cryptography

- Hash Functions (Charles-Goren-Lauter 2006/2009)
- Cryptographic key agreement (Couveignes 1996/2006, Rostovtsev-Stolbunov 2006, De Feo-Jao-Plût 2011 (broken), Castryck-Lange-Martindale-Panny-Renes 2018, Colò-Kohel 2020)
- Constructing elliptic curves with a hard discrete log problem (Belding-Bröker-Enge-Lauter 2008)

Cryptography

- Hash Functions (Charles-Goren-Lauter 2006/2009)
- Cryptographic key agreement (Couveignes 1996/2006, Rostovtsev-Stolbunov 2006, De Feo-Jao-Plût 2011 (broken), Castryck-Lange-Martindale-Panny-Renes 2018, Colò-Kohel 2020)
- Constructing elliptic curves with a hard discrete log problem (Belding-Bröker-Enge-Lauter 2008)

Computing endomorphism rings (Kohel 1996, Bisson-Sutherland 2011)

Cryptography

- Hash Functions (Charles-Goren-Lauter 2006/2009)
- Cryptographic key agreement (Couveignes 1996/2006, Rostovtsev-Stolbunov 2006, De Feo-Jao-Plût 2011 (broken), Castryck-Lange-Martindale-Panny-Renes 2018, Colò-Kohel 2020)
- Constructing elliptic curves with a hard discrete log problem (Belding-Bröker-Enge-Lauter 2008)

Computing endomorphism rings (Kohel 1996, Bisson-Sutherland 2011)

Point counting (Elkies 1997, Fouquet-Morain 2002)

Cryptography

- Hash Functions (Charles-Goren-Lauter 2006/2009)
- Cryptographic key agreement (Couveignes 1996/2006, Rostovtsev-Stolbunov 2006, De Feo-Jao-Plût 2011 (broken), Castryck-Lange-Martindale-Panny-Renes 2018, Colò-Kohel 2020)
- Constructing elliptic curves with a hard discrete log problem (Belding-Bröker-Enge-Lauter 2008)

Computing endomorphism rings (Kohel 1996, Bisson-Sutherland 2011)

Point counting (Elkies 1997, Fouquet-Morain 2002)

Computing modular polynomials (Bröker-Lauter-Sutherland 2012, Sutherland 2014)

Cryptography

- Hash Functions (Charles-Goren-Lauter 2006/2009)
- Cryptographic key agreement (Couveignes 1996/2006, Rostovtsev-Stolbunov 2006, De Feo-Jao-Plût 2011 (broken), Castryck-Lange-Martindale-Panny-Renes 2018, Colò-Kohel 2020)
- Constructing elliptic curves with a hard discrete log problem (Belding-Bröker-Enge-Lauter 2008)

Computing endomorphism rings (Kohel 1996, Bisson-Sutherland 2011)

Point counting (Elkies 1997, Fouquet-Morain 2002)

Computing modular polynomials (Bröker-Lauter-Sutherland 2012, Sutherland 2014)

Generating irreducible polynomials (Couveignes-Lercier 2013)

E, E' ordinary (p-torsion $\mathbb{Z}/p\mathbb{Z}$):

- ullet Classical: $ilde{O}(q^{1/4})$ (Galbraith-Heß-Smart 2002)
- Quantum: $\exp\left(\frac{\sqrt{3}}{2}\sqrt{\log q \log \log q}\right)$ (Childs-Jao-Shoukarev 2014)

(U Calgary)

- E, E' ordinary (p-torsion $\mathbb{Z}/p\mathbb{Z}$):
 - Classical: $\tilde{O}(q^{1/4})$ (Galbraith-Heß-Smart 2002)
 - Quantum: $\exp\left(\frac{\sqrt{3}}{2}\sqrt{\log q \log \log q}\right)$ (Childs-Jao-Shoukarev 2014)
- E, E' supersingular (p-torsion trivial) and defined over \mathbb{F}_p :
 - Classical : $\tilde{O}(p^{1/4})$ (Delfts-Galbraith 2014)
 - Quantum : $\exp\left(\frac{\sqrt{3}}{2}\sqrt{\log p \log \log p}\right)$ (Biasse-Jao-Sankar 2014)

- E, E' ordinary (p-torsion $\mathbb{Z}/p\mathbb{Z}$):
 - Classical: $\tilde{O}(q^{1/4})$ (Galbraith-Heß-Smart 2002)
 - Quantum: $\exp\left(\frac{\sqrt{3}}{2}\sqrt{\log q \log \log q}\right)$ (Childs-Jao-Shoukarev 2014)
- E, E' supersingular (p-torsion trivial) and defined over \mathbb{F}_p :
 - Classical : $\tilde{O}(p^{1/4})$ (Delfts-Galbraith 2014)
 - Quantum : $\exp\left(\frac{\sqrt{3}}{2}\sqrt{\log p \log \log p}\right)$ (Biasse-Jao-Sankar 2014)
- E, E' supersingular, in general (i.e. defined over \mathbb{F}_{p^2}):
 - Classical: $\tilde{O}(p^{1/2})$ (Delfts-Galbraith 2014)
 - Quantum: $\tilde{O}(p^{1/4})$ (Biasse-Jao-Sankar 2014)

- E, E' ordinary (p-torsion $\mathbb{Z}/p\mathbb{Z}$):
 - Classical: $\tilde{O}(q^{1/4})$ (Galbraith-Heß-Smart 2002)
 - Quantum: $\exp\left(\frac{\sqrt{3}}{2}\sqrt{\log q \log \log q}\right)$ (Childs-Jao-Shoukarev 2014)
- E, E' supersingular (p-torsion trivial) and defined over \mathbb{F}_p :
 - Classical : $\tilde{O}(p^{1/4})$ (Delfts-Galbraith 2014)
 - Quantum : $\exp\left(\frac{\sqrt{3}}{2}\sqrt{\log p \log \log p}\right)$ (Biasse-Jao-Sankar 2014)
- E, E' supersingular, in general (i.e. defined over \mathbb{F}_{p^2}):
 - Classical: $\tilde{O}(p^{1/2})$ (Delfts-Galbraith 2014)
 - Quantum: $\tilde{O}(p^{1/4})$ (Biasse-Jao-Sankar 2014)
- This work: New subexponential algorithms

- E, E' ordinary (p-torsion $\mathbb{Z}/p\mathbb{Z}$):
 - Classical: $\tilde{O}(q^{1/4})$ (Galbraith-Heß-Smart 2002)
 - Quantum: $\exp\left(\frac{\sqrt{3}}{2}\sqrt{\log q \log \log q}\right)$ (Childs-Jao-Shoukarev 2014)
- E, E' supersingular (p-torsion trivial) and defined over \mathbb{F}_p :
 - Classical : $\tilde{O}(p^{1/4})$ (Delfts-Galbraith 2014)
 - Quantum : $\exp\left(\frac{\sqrt{3}}{2}\sqrt{\log p \log \log p}\right)$ (Biasse-Jao-Sankar 2014)
- E, E' supersingular, in general (i.e. defined over \mathbb{F}_{p^2}):
 - Classical: $\tilde{O}(p^{1/2})$ (Delfts-Galbraith 2014)
 - Quantum: $\tilde{O}(p^{1/4})$ (Biasse-Jao-Sankar 2014)
- This work: New subexponential algorithms
- Different subexponential algorithms due to Wesolowski 2021 (concurrently)

Endomorphism of E: group homomorphism $E \to E$

Endomorphism of E: group homomorphism $E \to E$

The endomorphisms of E form a ring under addition and composition called the **endomorphism ring** of E and denoted $\operatorname{End}(E)$.

Endomorphism of E: group homomorphism $E \to E$

The endomorphisms of E form a ring under addition and composition called the **endomorphism ring** of E and denoted $\operatorname{End}(E)$.

By the theory of *complex multiplication*, End(E) is isomorphic to

- an imaginary quadratic order \mathcal{O} when E is **ordinary** (non-trivial p-torsion)
- a maximal order $\mathcal O$ in the quaternion algebra ramified at p and ∞ when E is **supersingular** (trivial p-torsion)

Endomorphism of E: group homomorphism $E \to E$

The endomorphisms of E form a ring under addition and composition called the **endomorphism ring** of E and denoted $\operatorname{End}(E)$.

By the theory of *complex multiplication*, End(E) is isomorphic to

- an imaginary quadratic order \mathcal{O} when E is **ordinary** (non-trivial p-torsion)
- a maximal order $\mathcal O$ in the quaternion algebra ramified at p and ∞ when E is **supersingular** (trivial p-torsion)

E has **complex multiplication** (CM) by \mathcal{O} : End(*E*) $\cong \mathcal{O}$.

Path finding for supersingular elliptic curves is equivalent to computing endomorphism rings (Eisenträger-Hallgren-Lauter-Morrison-Petit 2018, Wesolowski 2022).

Path finding for supersingular elliptic curves is equivalent to computing endomorphism rings (Eisenträger-Hallgren-Lauter-Morrison-Petit 2018, Wesolowski 2022).

Easy if

- The endomorphism rings are known (Kohel-Lauter-Petit-Tignol 2014)
- One small non-integer endomorphism is known (Love-Boneh 2020)

Path finding for supersingular elliptic curves is equivalent to computing endomorphism rings (Eisenträger-Hallgren-Lauter-Morrison-Petit 2018, Wesolowski 2022).

Easy if

- The endomorphism rings are known (Kohel-Lauter-Petit-Tignol 2014)
- One small non-integer endomorphism is known (Love-Boneh 2020)

Problem:

Finding endomorphism rings is hard

(U Calgary)

Small non-integer endomorphisms are rare and hard to find

Path finding for supersingular elliptic curves is equivalent to computing endomorphism rings (Eisenträger-Hallgren-Lauter-Morrison-Petit 2018, Wesolowski 2022).

Easy if

- The endomorphism rings are known (Kohel-Lauter-Petit-Tignol 2014)
- One small non-integer endomorphism is known (Love-Boneh 2020)

Problem:

- Finding endomorphism rings is hard
- Small non-integer endomorphisms are rare and hard to find

Question: Can paths be found with one (possibly large) endomorphism?

i-Invariant

j-invariant of
$$E: y^2 = x^3 + ax + b$$
 $(a, b \in \mathbb{F}_q, p \ge 5)$:

$$j(E) = 1728 \, \frac{4a^3}{4a^3 + 27b^2} \in \mathbb{F}_q$$

j-Invariant

j-invariant of
$$E: y^2 = x^3 + ax + b \quad (a, b \in \mathbb{F}_q, \ p \ge 5)$$
:

$$j(E) = 1728 \, \frac{4a^3}{4a^3 + 27b^2} \in \mathbb{F}_q$$

Properties:

 \bullet Every $j \in \mathbb{F}_q$ is the j-invariant of some elliptic curve over \mathbb{F}_q

(U Calgary)

j-Invariant

j-invariant of
$$E: y^2 = x^3 + ax + b \quad (a, b \in \mathbb{F}_q, \ p \ge 5)$$
:

$$j(E) = 1728 \, \frac{4a^3}{4a^3 + 27b^2} \in \mathbb{F}_q$$

Properties:

- ullet Every $j\in \mathbb{F}_q$ is the j-invariant of some elliptic curve over \mathbb{F}_q
- E supersingular $\Rightarrow j(E) \in \mathbb{F}_{p^2}$

j-Invariant

j-invariant of
$$E: y^2 = x^3 + ax + b \quad (a, b \in \mathbb{F}_q, \ p \ge 5)$$
:

$$j(E) = 1728 \, \frac{4a^3}{4a^3 + 27b^2} \in \mathbb{F}_q$$

Properties:

- ullet Every $j\in \mathbb{F}_q$ is the j-invariant of some elliptic curve over \mathbb{F}_q
- E supersingular $\Rightarrow j(E) \in \mathbb{F}_{p^2}$

(U Calgary)

 The j-invariant is invariant under isomorphism (isomorphism = bijective isogeny)

Class Group Action

Let E/\mathbb{F}_q be ordinary with an isomorphism $\iota:\mathcal{O}\stackrel{\sim}{\longrightarrow} \operatorname{End}(E)$

1

Class Group Action

Let E/\mathbb{F}_q be ordinary with an isomorphism $\iota:\mathcal{O}\stackrel{\sim}{\longrightarrow} \operatorname{End}(E)$

For any invertible \mathcal{O} -ideal \mathfrak{a} with $p \nmid \operatorname{Norm}(\mathfrak{a}) = [\mathcal{O} : \mathfrak{a}]$, the subgroup

$$E[\mathfrak{a}] = \bigcap_{\alpha \in \iota(\mathfrak{a})} \ker(\alpha) = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \iota(\mathfrak{a}) \}$$

defines an isogeny $\varphi_{\mathfrak{a}}: E \to E'$ with kernel $E[\mathfrak{a}]$ and $E' \cong E/E[\mathfrak{a}]$.

Class Group Action

Let E/\mathbb{F}_q be ordinary with an isomorphism $\iota:\mathcal{O}\stackrel{\sim}{\longrightarrow} \operatorname{End}(E)$

For any invertible \mathcal{O} -ideal \mathfrak{a} with $p \nmid \operatorname{Norm}(\mathfrak{a}) = [\mathcal{O} : \mathfrak{a}]$, the subgroup

$$E[\mathfrak{a}] = \bigcap_{\alpha \in \iota(\mathfrak{a})} \ker(\alpha) = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \iota(\mathfrak{a}) \}$$

defines an isogeny $\varphi_{\mathfrak{a}}: E \to E'$ with kernel $E[\mathfrak{a}]$ and $E' \cong E/E[\mathfrak{a}]$.

This induces a faithful¹ and transitive² action of $Cl(\mathcal{O})$ on the **CM torsor**

$$\mathsf{Ell}_{\mathcal{O}}(\mathbb{F}_q) = \{ j(E) \mid E \text{ an elliptic curve over } \mathbb{F}_q \text{ with } \mathsf{End}(E) \cong \mathcal{O} \}$$

¹Only the principal ideal class acts trivially

²Any two j-invariants in $\mathsf{Ell}_\mathcal{O}(\mathbb{F}_q)$ are related by some ideal class

Class Group Action

Let E/\mathbb{F}_q be ordinary with an isomorphism $\iota:\mathcal{O}\stackrel{\sim}{\longrightarrow} \operatorname{End}(E)$

For any invertible \mathcal{O} -ideal \mathfrak{a} with $p \nmid \text{Norm}(\mathfrak{a}) = [\mathcal{O} : \mathfrak{a}]$, the subgroup

$$E[\mathfrak{a}] = \bigcap_{\alpha \in \iota(\mathfrak{a})} \ker(\alpha) = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \iota(\mathfrak{a}) \}$$

defines an isogeny $\varphi_{\mathfrak{a}}: E \to E'$ with kernel $E[\mathfrak{a}]$ and $E' \cong E/E[\mathfrak{a}]$.

This induces a faithful¹ and transitive² action of $Cl(\mathcal{O})$ on the **CM torsor**

$$\mathsf{Ell}_{\mathcal{O}}(\mathbb{F}_q) = \{j(E) \mid E \text{ an elliptic curve over } \mathbb{F}_q \text{ with } \mathsf{End}(E) \cong \mathcal{O}\}$$

via

$$[\mathfrak{a}] \star j(E) \mapsto j(E/E[\mathfrak{a}])$$

¹Only the principal ideal class acts trivially

²Any two j-invariants in $\mathsf{Ell}_\mathcal{O}(\mathbb{F}_q)$ are related by some ideal class

 ℓ -isogeny graph $\mathcal{G}_{\ell}(\mathbb{F}_q)$ ($\ell \neq p$ prime):

- Vertices: \mathbb{F}_q , viewed as the set of isomorphism classes (*j*-invariants) of elliptic curves over \mathbb{F}_q (independent of ℓ)
- ullet Directed Edges: isogenies of degree ℓ

 ℓ -isogeny graph $\mathcal{G}_{\ell}(\mathbb{F}_q)$ ($\ell \neq p$ prime):

- Vertices: \mathbb{F}_q , viewed as the set of isomorphism classes (*j*-invariants) of elliptic curves over \mathbb{F}_q (independent of ℓ)
- Directed Edges: isogenies of degree ℓ

By identifying an isogeny with its dual, $\mathcal{G}_{\ell}(\mathbb{F}_q)$ becomes an undirected graph.

 ℓ -isogeny graph $\mathcal{G}_{\ell}(\mathbb{F}_q)$ ($\ell \neq p$ prime):

- Vertices: \mathbb{F}_q , viewed as the set of isomorphism classes (*j*-invariants) of elliptic curves over \mathbb{F}_q (independent of ℓ)
- Directed Edges: isogenies of degree ℓ

By identifying an isogeny with its dual, $\mathcal{G}_{\ell}(\mathbb{F}_q)$ becomes an undirected graph.

The **dual** of an isogeny $\varphi: E \to E'$ of degree n is the unique isogeny $\hat{\varphi}: E' \to E$ (same degree) such that

$$\hat{\varphi}\varphi = [n] \text{ on } E, \quad \varphi\hat{\varphi} = [n] \text{ on } E'$$

 ℓ -isogeny graph $\mathcal{G}_{\ell}(\mathbb{F}_q)$ ($\ell \neq p$ prime):

- Vertices: \mathbb{F}_a , viewed as the set of isomorphism classes (*j*-invariants) of elliptic curves over \mathbb{F}_q (independent of ℓ)
- Directed Edges: isogenies of degree ℓ

By identifying an isogeny with its dual, $\mathcal{G}_{\ell}(\mathbb{F}_q)$ becomes an undirected graph.

The **dual** of an isogeny $\varphi: E \to E'$ of degree n is the unique isogeny $\hat{\varphi}: E' \to E$ (same degree) such that

$$\hat{\varphi}\varphi = [n] \text{ on } E, \quad \varphi\hat{\varphi} = [n] \text{ on } E'$$

where
$$[n]P = \underbrace{P + P + \cdots + P}_{n \text{ times}}$$
.

Structure of $\mathcal{G}_{\ell}(\mathbb{F}_q)$ (Kohel 1996)

 $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is a disconnected graph that is almost $(\ell+1)$ -regular.

(U Calgary)

Structure of $\mathcal{G}_\ell(\mathbb{F}_q)$ (Kohel 1996)

 $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is a disconnected graph that is almost $(\ell+1)$ -regular.

- ullet Almost every vertex is incident with $\ell+1$ edges:
 - ▶ Every ℓ -isogeny on E has a kernel that is an order ℓ subgroup of $E[\ell] \cong \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$
 - ▶ There are $\ell + 1$ such subgroups

Structure of $\mathcal{G}_\ell(\mathbb{F}_q)$ (Kohel 1996)

 $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is a disconnected graph that is almost $(\ell+1)$ -regular.

- Almost every vertex is incident with $\ell+1$ edges:
 - ▶ Every ℓ -isogeny on E has a kernel that is an order ℓ subgroup of $E[\ell] \cong \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$
 - ▶ There are $\ell + 1$ such subgroups

Exceptions: j = 0 and j = 1728 and their neighbours:

- ▶ j = 0 has CM by $\mathcal{O} \cong \mathbb{Z}[\sqrt{-1}]$ j = 1728 has CM by $\mathcal{O} \cong \mathbb{Z}[\sqrt{-3}]$
- \blacktriangleright These curves have extra automorphisms because of the extra units in ${\cal O}$

Structure of $\mathcal{G}_{\ell}(\mathbb{F}_q)$ (Kohel 1996)

 $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is a disconnected graph that is almost $(\ell+1)$ -regular.

- Almost every vertex is incident with $\ell+1$ edges:
 - ▶ Every ℓ -isogeny on E has a kernel that is an order ℓ subgroup of $E[\ell] \cong \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$
 - ▶ There are $\ell + 1$ such subgroups

Exceptions: j = 0 and j = 1728 and their neighbours:

- ▶ j = 0 has CM by $\mathcal{O} \cong \mathbb{Z}[\sqrt{-1}]$ j = 1728 has CM by $\mathcal{O} \cong \mathbb{Z}[\sqrt{-3}]$
- \blacktriangleright These curves have extra automorphisms because of the extra units in $\mathcal O$
- All supersingular curves (there are about p/12 of them) lie in one connected component which is a **Ramanujan graph** (an optimal expander graph) when $p \equiv 1 \pmod{12}$ (Pizer 1990)

Structure of $\mathcal{G}_{\ell}(\mathbb{F}_q)$ (Kohel 1996)

 $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is a disconnected graph that is almost $(\ell+1)$ -regular.

- Almost every vertex is incident with $\ell+1$ edges:
 - ▶ Every ℓ -isogeny on E has a kernel that is an order ℓ subgroup of $E[\ell] \cong \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$
 - ▶ There are $\ell + 1$ such subgroups

Exceptions: j = 0 and j = 1728 and their neighbours:

- ▶ j = 0 has CM by $\mathcal{O} \cong \mathbb{Z}[\sqrt{-1}]$ j = 1728 has CM by $\mathcal{O} \cong \mathbb{Z}[\sqrt{-3}]$
- \blacktriangleright These curves have extra automorphisms because of the extra units in ${\cal O}$
- All supersingular curves (there are about p/12 of them) lie in one connected component which is a **Ramanujan graph** (an optimal expander graph) when $p \equiv 1 \pmod{12}$ (Pizer 1990)
- Ordinary components are volcanoes (Fouquet 2001, Fouquet-Morain 2002)

Two Isogeny Graph Components

Ordinary component $(\ell=3)$

Image: Dustin Moody

Supersingular component $(\ell=2)$

Image: Dennis Charles

The ordinary components of $G_{\ell}(\mathbb{F}_q)$ are **volcanoes**:

Unique cycle (possibly degenerate) called the rim

- Unique cycle (possibly degenerate) called the rim
- Each rim vertex is the root of a full³ tree of height $h = v_{\ell}(f_{\pi})$

³All leaf notes at the same level

- Unique cycle (possibly degenerate) called the rim
- Each rim vertex is the root of a full³ tree of height $h = v_{\ell}(f_{\pi})$ where f_{π} is the conductor of the *Frobenius order* $\mathbb{Z}[\pi]$ with $\pi(x, y) = (x^q, y^q)$

³All leaf notes at the same level

- Unique cycle (possibly degenerate) called the rim
- Each rim vertex is the root of a full³ tree of height $h = v_{\ell}(f_{\pi})$ where f_{π} is the conductor of the *Frobenius order* $\mathbb{Z}[\pi]$ with $\pi(x, y) = (x^q, y^q)$
- The nodes at level k ($0 \le k \le h$) have CM by the order \mathcal{O}_k whose conductor has ℓ -adic valuation k

³All leaf notes at the same level

- Unique cycle (possibly degenerate) called the rim
- Each rim vertex is the root of a full³ tree of height $h = v_{\ell}(f_{\pi})$ where f_{π} is the conductor of the *Frobenius order* $\mathbb{Z}[\pi]$ with $\pi(x, y) = (x^q, y^q)$
- The nodes at level k ($0 \le k \le h$) have CM by the order \mathcal{O}_k whose conductor has ℓ -adic valuation k
- If \mathfrak{l} is a prime ideal in \mathcal{O}_0 (the rim order) above ℓ , then the ideal class $[\mathfrak{l}] \in \mathsf{Cl}(\mathcal{O}_0)$ acts on the rim vertices; In particular, the rim has size $\mathsf{ord}([\mathfrak{l}])$

³All leaf notes at the same level

The ordinary components of $G_{\ell}(\mathbb{F}_q)$ are **volcanoes**:

- Unique cycle (possibly degenerate) called the rim
- Each rim vertex is the root of a full³ tree of height $h = v_{\ell}(f_{\pi})$ where f_{π} is the conductor of the *Frobenius order* $\mathbb{Z}[\pi]$ with $\pi(x, y) = (x^q, y^q)$
- The nodes at level k ($0 \le k \le h$) have CM by the order \mathcal{O}_k whose conductor has ℓ -adic valuation k
- If $\mathfrak l$ is a prime ideal in $\mathcal O_0$ (the rim order) above ℓ , then the ideal class $[\mathfrak l] \in \mathsf{Cl}(\mathcal O_0)$ acts on the rim vertices; In particular, the rim has size $\mathsf{ord}([\mathfrak l])$

The class group action significantly facilitates rim navigation!

³All leaf notes at the same level

Walking down to the floor is used to

 Determine wether a curve is ordinary or supersingular (in the latter case, the floor is never reached)

Walking down to the floor is used to

- Determine wether a curve is ordinary or supersingular (in the latter case, the floor is never reached)
- Computing ordinary endomorphism rings in subexponential time: for each ℓ dividing f_{π} , locate the ordinary curve in the ℓ -volcano and determine the level k via a path to the floor (assumes knowledge of the factorization of f_{π})

Walking down to the floor is used to

- Determine wether a curve is ordinary or supersingular (in the latter case, the floor is never reached)
- Computing ordinary endomorphism rings in subexponential time: for each ℓ dividing f_{π} , locate the ordinary curve in the ℓ -volcano and determine the level k via a path to the floor (assumes knowledge of the factorization of f_{π})
- Point counting

Walking down to the floor is used to

- Determine wether a curve is ordinary or supersingular (in the latter case, the floor is never reached)
- Computing ordinary endomorphism rings in subexponential time: for each ℓ dividing f_{π} , locate the ordinary curve in the ℓ -volcano and determine the level k via a path to the floor (assumes knowledge of the factorization of f_{π})
- Point counting

Walking the rim is used to compute

• Hilbert class polynomials (needed in the CM method for constructing cryptographically suitable elliptic curves over a given field \mathbb{F}_p with a given number of \mathbb{F}_p -points)

Walking down to the floor is used to

- Determine wether a curve is ordinary or supersingular (in the latter case, the floor is never reached)
- Computing ordinary endomorphism rings in subexponential time: for each ℓ dividing f_{π} , locate the ordinary curve in the ℓ -volcano and determine the level k via a path to the floor (assumes knowledge of the factorization of f_{π})
- Point counting

Walking the rim is used to compute

- Hilbert class polynomials (needed in the CM method for constructing cryptographically suitable elliptic curves over a given field \mathbb{F}_p with a given number of \mathbb{F}_p -points)
- Modular polynomials $\Phi_{\ell}(X,Y)$: j,j' ℓ -isogenous iff $\Phi_{\ell}(j,j')=0$

The supersingular component of $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is an expander graph – messy!

(U Calgary)

The supersingular component of $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is an expander graph – messy!

All the ordinary elliptic curves in $\mathcal{G}_{\ell}(\mathbb{F}_q)$ have CM by an order in the quadratic field $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{-p})$ (one quadratic field).

The supersingular component of $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is an expander graph – messy!

All the ordinary elliptic curves in $\mathcal{G}_{\ell}(\mathbb{F}_q)$ have CM by an order in the quadratic field $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{-p})$ (one quadratic field).

The supersingular curves generally have CM by a maximal order in a quaternion algebra (a non-commutative 4-dimensional object).

The supersingular component of $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is an expander graph – messy!

All the ordinary elliptic curves in $\mathcal{G}_{\ell}(\mathbb{F}_q)$ have CM by an order in the quadratic field $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{-p})$ (one quadratic field).

The supersingular curves generally have CM by a maximal order in a quaternion algebra (a non-commutative 4-dimensional object).

- Many quadratic orders generally embed into End(E)
- We can no longer navigate this component as for ordinary curves
- Path finding is much harder good for cryptography!

The supersingular component of $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is an expander graph – messy!

All the ordinary elliptic curves in $\mathcal{G}_{\ell}(\mathbb{F}_q)$ have CM by an order in the quadratic field $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{-p})$ (one quadratic field).

The supersingular curves generally have CM by a maximal order in a quaternion algebra (a non-commutative 4-dimensional object).

- Many quadratic orders generally embed into End(E)
- We can no longer navigate this component as for ordinary curves
- Path finding is much harder good for cryptography!

Orientations to the rescue!

The supersingular component of $\mathcal{G}_{\ell}(\mathbb{F}_q)$ is an expander graph – messy!

All the ordinary elliptic curves in $\mathcal{G}_{\ell}(\mathbb{F}_q)$ have CM by an order in the quadratic field $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{-p})$ (one quadratic field).

The supersingular curves generally have CM by a maximal order in a quaternion algebra (a non-commutative 4-dimensional object).

- Many quadratic orders generally embed into End(E)
- We can no longer navigate this component as for ordinary curves
- Path finding is much harder good for cryptography!

Orientations to the rescue!

Our work: path finding with one endomorphism (orientation).

Let

• E be an elliptic curve

⁴aka optimal embedding of E

Let

- E be an elliptic curve
- K be an imaginary quadratic field in which p does not split

⁴aka optimal embedding of E

Let

- E be an elliptic curve
- K be an imaginary quadratic field in which p does not split
 - ▶ Then K embeds into the quaternion algebra ramified at p and ∞ (in many ways)

⁴aka optimal embedding of E

Let

- E be an elliptic curve
- K be an imaginary quadratic field in which p does not split
 - ▶ Then K embeds into the quaternion algebra ramified at p and ∞ (in many ways)

K-Orientation of E: $\iota : K \hookrightarrow \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$

⁴aka optimal embedding of E

Let

- E be an elliptic curve
- K be an imaginary quadratic field in which p does not split
 - ▶ Then K embeds into the quaternion algebra ramified at p and ∞ (in many ways)

K-Orientation of E: $\iota : K \hookrightarrow \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$

• **Example:** ordinary E/\mathbb{F}_q have $\mathbb{Q}(\sqrt{-p})$ -orientations (isomorphisms)

⁴aka *optimal embedding* of *E*

Oriented Elliptic Curves

Let

- E be an elliptic curve
- K be an imaginary quadratic field in which p does not split
 - ▶ Then K embeds into the quaternion algebra ramified at p and ∞ (in many ways)

K-Orientation of E: $\iota : K \hookrightarrow \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$

• **Example:** ordinary E/\mathbb{F}_q have $\mathbb{Q}(\sqrt{-p})$ -orientations (isomorphisms)

 \mathcal{O} -Orientation of E (\mathcal{O} an order of K): $\iota(\mathcal{O}) \subseteq \operatorname{End}(E)$

⁴aka optimal embedding of E

Oriented Elliptic Curves

Let

- E be an elliptic curve
- K be an imaginary quadratic field in which p does not split
 - ▶ Then K embeds into the quaternion algebra ramified at p and ∞ (in many ways)

K-Orientation of E: $\iota : K \hookrightarrow \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$

• **Example:** ordinary E/\mathbb{F}_q have $\mathbb{Q}(\sqrt{-p})$ -orientations (isomorphisms)

 \mathcal{O} -Orientation of E (\mathcal{O} an order of K): $\iota(\mathcal{O}) \subseteq \operatorname{End}(E)$

Primitive⁴ \mathcal{O} -Orientation on E: $\iota(\mathcal{O}) = \operatorname{End}(E) \cap \iota(K)$

⁴aka optimal embedding of E

Oriented Elliptic Curves

Let

- E be an elliptic curve
- K be an imaginary quadratic field in which p does not split
 - ▶ Then K embeds into the quaternion algebra ramified at p and ∞ (in many ways)

K-Orientation of E: $\iota : K \hookrightarrow \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$

• **Example:** ordinary E/\mathbb{F}_q have $\mathbb{Q}(\sqrt{-p})$ -orientations (isomorphisms)

$$\mathcal{O}$$
-Orientation of E (\mathcal{O} an order of K): $\iota(\mathcal{O}) \subseteq \operatorname{End}(E)$

Primitive⁴
$$\mathcal{O}$$
-Orientation on E : $\iota(\mathcal{O}) = \operatorname{End}(E) \cap \iota(K)$

• **Example:** for ordinary curves, $\operatorname{End}(E) \cong \mathcal{O}$ iff E is primitively \mathcal{O} -embedded.

⁴aka optimal embedding of E

Let

- $\varphi: E \to E'$ be an isogeny of elliptic curves
- $\iota : K \hookrightarrow \operatorname{End}(E) \oplus_{\mathbb{Z}} \mathbb{Q}$ a K-orientation on E

Let

- $\varphi : E \to E'$ be an isogeny of elliptic curves
- $\iota : K \hookrightarrow \operatorname{End}(E) \oplus_{\mathbb{Z}} \mathbb{Q}$ a K-orientation on E

K-Orientation on E' induced by φ : $\iota' = \varphi_*(\iota)$ via

$$\iota'(lpha) = rac{1}{\mathsf{deg}(arphi)} \ arphi \ \iota(lpha) \ \hat{arphi} \in \mathsf{End}(E')$$

for all $\alpha \in K$.

Let

- $\varphi: E \to E'$ be an isogeny of elliptic curves
- $\iota : K \hookrightarrow \operatorname{End}(E) \oplus_{\mathbb{Z}} \mathbb{Q}$ a K-orientation on E

K-Orientation on E' induced by φ : $\iota' = \varphi_*(\iota)$ via

$$\iota'(\alpha) = \frac{1}{\mathsf{deg}(\varphi)} \ \varphi \ \iota(\alpha) \ \hat{\varphi} \in \mathsf{End}(E')$$

for all $\alpha \in K$.

$$\begin{array}{ccc}
E & \xrightarrow{\varphi} & E' \\
\iota(\alpha) \downarrow & & \downarrow \iota'(\alpha) \\
E & \xrightarrow{\varphi} & E'
\end{array}$$

Let

- $\varphi : E \to E'$ be an isogeny of elliptic curves
- $\iota : K \hookrightarrow \operatorname{End}(E) \oplus_{\mathbb{Z}} \mathbb{Q}$ a K-orientation on E

K-Orientation on E' induced by φ : $\iota' = \varphi_*(\iota)$ via

$$\iota'(\alpha) = \frac{1}{\mathsf{deg}(\varphi)} \ \varphi \ \iota(\alpha) \ \hat{\varphi} \in \mathsf{End}(E')$$

for all $\alpha \in K$.

$$\begin{array}{ccc} E & \xrightarrow{\varphi} & E' \\ \iota(\alpha) \downarrow & & \downarrow \iota'(\alpha) \\ E & \xrightarrow{\varphi} & E' \end{array}$$

Write
$$\varphi \cdot (E, \iota) = (\varphi(E), \varphi_*(\iota)) = (E', \iota')$$
.

Fix an imaginary quadratic field K.

Fix an imaginary quadratic field K.

K-oriented supersingular ℓ-isogeny graph (Colò-Kohel 2020):

- Vertices: Ordered pairs (j, ι) with $j \in \mathbb{F}_{p^2}$ and ι a K-orientation on the supersingular isomorphism class with j-invariant j
- Edges: oriented ℓ -isogenies (E, ι) $\xrightarrow{\varphi}$ $(\varphi(E), \varphi_*(\iota))$

Fix an imaginary quadratic field K.

K-oriented supersingular ℓ-isogeny graph (Colò-Kohel 2020):

- Vertices: Ordered pairs (j, ι) with $j \in \mathbb{F}_{p^2}$ and ι a K-orientation on the supersingular isomorphism class with j-invariant j
- Edges: oriented ℓ -isogenies (E, ι) $\stackrel{\varphi}{-}$ $(\varphi(E), \varphi_*(\iota))$

Structure: The components are . . .

Fix an imaginary quadratic field K.

K-oriented supersingular ℓ-isogeny graph (Colò-Kohel 2020):

- Vertices: Ordered pairs (j, ι) with $j \in \mathbb{F}_{p^2}$ and ι a K-orientation on the supersingular isomorphism class with j-invariant j
- Edges: oriented ℓ -isogenies (E, ι) $\stackrel{\varphi}{-}$ $(\varphi(E), \varphi_*(\iota))$

Structure: The components are ...infinite volcanoes! (No floor)

Fix an imaginary quadratic field K.

K-oriented supersingular ℓ -isogeny graph (Colò-Kohel 2020):

- Vertices: Ordered pairs (j, ι) with $j \in \mathbb{F}_{p^2}$ and ι a K-orientation on the supersingular isomorphism class with j-invariant j
- Edges: oriented ℓ -isogenies (E, ι) $\xrightarrow{\varphi}$ $(\varphi(E), \varphi_*(\iota))$

Structure: The components are ... infinite volcanoes! (No floor)

- Every j-invariant appears on every volcano infinitely often, each time paired with a different orientation
- $(\ell + 1)$ -regular except near j = 0,1728
- Vertices at level k are primitively oriented by an order \mathcal{O}_k whose conductor has ℓ -adic valuation k

An oriented 3-isogeny volcano

For a primitive orientation $\iota: \mathcal{O} = \mathbb{Z}[\omega] \xrightarrow{\sim} \operatorname{End}(E)$, the generator image $\iota(\omega)$ defines an endomorphism of E.

For a primitive orientation $\iota: \mathcal{O} = \mathbb{Z}[\omega] \xrightarrow{\sim} \operatorname{End}(E)$, the generator image $\iota(\omega)$ defines an endomorphism of E.

Conversely, let

- $\theta \in \operatorname{End}(E)$
- \bullet $\omega, \overline{\omega}$ be the roots of the minimal polynomial of θ

For a primitive orientation $\iota: \mathcal{O} = \mathbb{Z}[\omega] \xrightarrow{\sim} \operatorname{End}(E)$, the generator image $\iota(\omega)$ defines an endomorphism of E.

Conversely, let

- $\theta \in \operatorname{End}(E)$
- ullet $\omega,\overline{\omega}$ be the roots of the minimal polynomial of heta

Then there are two primitive $\mathbb{Z}[\omega]$ -orientations of E via

$$\iota_{\theta}(\omega) = \theta$$

$$\widehat{\iota_{ heta}}(\omega) = \widehat{ heta}\,, \qquad ext{equivalently,} \ \ \widehat{\iota_{ heta}}(\overline{\omega}) = heta$$

For a primitive orientation $\iota: \mathcal{O} = \mathbb{Z}[\omega] \xrightarrow{\sim} \operatorname{End}(E)$, the generator image $\iota(\omega)$ defines an endomorphism of E.

Conversely, let

- $\theta \in \operatorname{End}(E)$
- ullet $\omega,\overline{\omega}$ be the roots of the minimal polynomial of heta

Then there are two primitive $\mathbb{Z}[\omega]$ -orientations of E via

$$\iota_{ heta}(\omega) = \theta$$
 $\widehat{\iota_{ heta}}(\omega) = \widehat{\theta}$, equivalently, $\widehat{\iota_{ heta}}(\overline{\omega}) = \theta$

Note: $(E, \iota_{\theta}) \neq (E, \widehat{\iota_{\theta}})$.

For a primitive orientation $\iota: \mathcal{O} = \mathbb{Z}[\omega] \xrightarrow{\sim} \operatorname{End}(E)$, the generator image $\iota(\omega)$ defines an endomorphism of E.

Conversely, let

- $\theta \in \operatorname{End}(E)$
- \bullet $\omega, \overline{\omega}$ be the roots of the minimal polynomial of θ

Then there are two primitive $\mathbb{Z}[\omega]$ -orientations of E via

$$\iota_{ heta}(\omega) = heta$$

$$\widehat{\iota_{ heta}}(\omega) = \widehat{ heta} \,, \qquad ext{equivalently,} \quad \widehat{\iota_{ heta}}(\overline{\omega}) = heta$$

Note: $(E, \iota_{\theta}) \neq (E, \widehat{\iota_{\theta}})$.

(U Calgary)

Fortunately, in terms of navigating oriented ℓ -volcanoes, the two vertices "look and behave the same locally" (same j-invariant, same level, same neighbours due to identifying dual edges etc.)

For a primitive orientation $\iota: \mathcal{O} = \mathbb{Z}[\omega] \xrightarrow{\sim} \operatorname{End}(E)$, the generator image $\iota(\omega)$ defines an endomorphism of E.

Conversely, let

- $\theta \in \operatorname{End}(E)$
- \bullet $\omega, \overline{\omega}$ be the roots of the minimal polynomial of θ

Then there are two primitive $\mathbb{Z}[\omega]$ -orientations of E via

$$\iota_{ heta}(\omega) = \theta$$
 $\widehat{\iota_{ heta}}(\omega) = \widehat{\theta}$, equivalently, $\widehat{\iota_{ heta}}(\overline{\omega}) = \theta$

Note: $(E, \iota_{\theta}) \neq (E, \widehat{\iota_{\theta}})$.

Fortunately, in terms of navigating oriented ℓ -volcanoes, the two vertices "look and behave the same locally" (same j-invariant, same level, same neighbours due to identifying dual edges etc.)

We work with endomorphisms instead of orientations because they are much more concrete and computationally amenable!

Let

- $\varphi: E \to E'$ be an ℓ -isogeny
- $\theta \in \text{End}(E)$ represent the orientation on E

Let

- $\varphi: E \to E'$ be an ℓ -isogeny
- $\theta \in \text{End}(E)$ represent the orientation on E

Assume that θ has a certain normal form (achieved via translation by a suitable integer).

Let

- $\varphi: E \to E'$ be an ℓ -isogeny
- $\theta \in \text{End}(E)$ represent the orientation on E

Assume that θ has a certain *normal form* (achieved via translation by a suitable integer).

The induced endomorphism on E' is θ'/ℓ where $\theta' = \varphi\theta\hat{\varphi}$.

Let

- $\varphi: E \to E'$ be an ℓ -isogeny
- $\theta \in \text{End}(E)$ represent the orientation on E

Assume that θ has a certain *normal form* (achieved via translation by a suitable integer).

The induced endomorphism on E' is θ'/ℓ where $\theta' = \varphi\theta\hat{\varphi}$.

Proposition

If $\ell \nmid \theta$, then φ has the following direction:

> ↑

- if $\ell^2 \mid \theta'$
- ullet ightarrow or \leftarrow (i.e. in the rim) if $\ell \mid \theta'$ and $\ell^2 \nmid \theta'$
- ↓

if $\ell \nmid \theta'$

Let

- $\varphi: E \to E'$ be an ℓ -isogeny
- $\theta \in \text{End}(E)$ represent the orientation on E

Assume that θ has a certain *normal form* (achieved via translation by a suitable integer).

The induced endomorphism on E' is θ'/ℓ where $\theta' = \varphi\theta\hat{\varphi}$.

Proposition

If $\ell \nmid \theta$, then φ has the following direction:

- ullet \uparrow if $\ell^2 \mid heta'$
- \bullet \to or \leftarrow (i.e. in the rim) if $\ell \mid \theta'$ and $\ell^2 \nmid \theta'$
- $\bullet\downarrow$ if $\ell \nmid \theta'$

Can also use the eigenvalues of θ acting on $E[\ell]$ for direction finding (but for traversing edges, division by ℓ incurs ℓ -adic precision losses!)

Let (E, ι) be supersingular and primitively oriented by \mathcal{O} .

Let (E, ι) be supersingular and primitively oriented by \mathcal{O} .

For any invertible \mathcal{O} -ideal \mathfrak{a} with $p \nmid \mathsf{Norm}(\mathfrak{a}) = [\mathcal{O} : \mathfrak{a}]$, define

$$E[\mathfrak{a}] = \bigcap_{\alpha \in \iota(\mathfrak{a})} \ker(\alpha) = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \iota(\mathfrak{a}) \}$$

Let (E, ι) be supersingular and primitively oriented by \mathcal{O} .

For any invertible \mathcal{O} -ideal \mathfrak{a} with $p \nmid \mathsf{Norm}(\mathfrak{a}) = [\mathcal{O} : \mathfrak{a}]$, define

$$E[\mathfrak{a}] = \bigcap_{\alpha \in \iota(\mathfrak{a})} \ker(\alpha) = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \iota(\mathfrak{a}) \}$$

 $\mathsf{Cl}(\mathcal{O})$ acts freely⁵, with one or two orbits related via Frobenius π , on

$$SS_{\mathcal{O}}^{pr}(p) = \{(j(E), \iota) \mid \iota \text{ is an } \mathcal{O}\text{-primitive orientation on } E\}$$

via
$$[\mathfrak{a}] \star j(E) \mapsto j(E/E[\mathfrak{a}])$$
 (Onuki 2021, ACLSST 2022).

⁵No fixed points

Let (E, ι) be supersingular and primitively oriented by \mathcal{O} .

For any invertible \mathcal{O} -ideal \mathfrak{a} with $p \nmid \mathsf{Norm}(\mathfrak{a}) = [\mathcal{O} : \mathfrak{a}]$, define

$$E[\mathfrak{a}] = \bigcap_{\alpha \in \iota(\mathfrak{a})} \ker(\alpha) = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \iota(\mathfrak{a}) \}$$

 $\mathsf{Cl}(\mathcal{O})$ acts freely⁵, with one or two orbits related via Frobenius π , on

$$SS_{\mathcal{O}}^{pr}(p) = \{(j(E), \iota) \mid \iota \text{ is an } \mathcal{O}\text{-primitive orientation on } E\}$$

via
$$[\mathfrak{a}] \star j(E) \mapsto j(E/E[\mathfrak{a}])$$
 (Onuki 2021, ACLSST 2022).

This action can again be used to walk rims of oriented ℓ -isogeny volcanoes.

⁵No fixed points

 $^{^{6}}$ e g i = 0 or i = 1728

To find an ℓ -isogeny path starting at a curve E to a curve E' with known endomorphism ring⁶, given **one** endomorphism $\theta \in \operatorname{End}(E)$:

• Pick a K such that ι_{θ} is a K-orientation of E $(\operatorname{disc}(\theta) = f^2 \operatorname{disc}(K) \text{ with } f \in \mathbb{Z}, \text{ ideally } \operatorname{disc}(K) \text{ small})$

 $^{^{6}}$ e g i = 0 or i = 1728

- Pick a K such that ι_{θ} is a K-orientation of E (disc(θ) = f^2 disc(K) with $f ∈ \mathbb{Z}$, ideally disc(K) small)
- **②** Walk a K-oriented ℓ -isogeny path from E to the rim of its volcano

- Pick a K such that ι_{θ} is a K-orientation of E (disc(θ) = f^2 disc(K) with $f \in \mathbb{Z}$, ideally disc(K) small)
- **2** Walk a K-oriented ℓ -isogeny path from E to the rim of its volcano
- **3** Orient E' by K (feasible because End(E') is known)

- Pick a K such that ι_{θ} is a K-orientation of E (disc(θ) = f^2 disc(K) with $f ∈ \mathbb{Z}$, ideally disc(K) small)
- **②** Walk a K-oriented ℓ -isogeny path from E to the rim of its volcano
- **3** Orient E' by K (feasible because End(E') is known)
- **4** Walk a K-oriented ℓ -isogeny path from E' to the rim of its volcano

- Pick a K such that ι_{θ} is a K-orientation of E (disc(θ) = f^2 disc(K) with $f ∈ \mathbb{Z}$, ideally disc(K) small)
- ② Walk a K-oriented ℓ -isogeny path from E to the rim of its volcano
- **3** Orient E' by K (feasible because End(E') is known)
- **1** Walk a K-oriented ℓ -isogeny path from E' to the rim of its volcano
- Hoping you hit the same oriented rim, walk it via the class group action to connect the two paths; if not, try again with a different K

⁶e.g. i = 0 or i = 1728

- Pick a K such that ι_{θ} is a K-orientation of E $(\operatorname{disc}(\theta) = f^2 \operatorname{disc}(K) \text{ with } f \in \mathbb{Z}, \text{ ideally } \operatorname{disc}(K) \text{ small})$
- ② Walk a K-oriented ℓ -isogeny path from E to the rim of its volcano
- 3 Orient E' by K (feasible because End(E') is known)
- **1** Walk a K-oriented ℓ -isogeny path from E' to the rim of its volcano
- Hoping you hit the same oriented rim, walk it via the class group action to connect the two paths; if not, try again with a different K
- Put the segments together to form the path and forget all the orientations

⁶e.g. j = 0 or j = 1728

Example

$$p = 179$$
, $\mathbb{F}_{179^2} = \mathbb{F}_{179}(i)$ with $i^2 = -1$, $\ell = 2$.

Example

$$p = 179$$
, $\mathbb{F}_{179^2} = \mathbb{F}_{179}(i)$ with $i^2 = -1$, $\ell = 2$.

Find a 2-isogeny path from E to E' over \mathbb{F}_{170^2} where

•
$$E = E_{120} : y^2 = x^3 + (7i + 86)x + (45i + 174)$$

•
$$E' = E_{1728} : y^2 = x^3 - x$$

Orienteering on Isogeny Volcanoes

Example

$$p = 179$$
, $\mathbb{F}_{179^2} = \mathbb{F}_{179}(i)$ with $i^2 = -1$, $\ell = 2$.

Find a 2-isogeny path from E to E' over \mathbb{F}_{179^2} where

•
$$E = E_{120} : y^2 = x^3 + (7i + 86)x + (45i + 174)$$

•
$$E' = E_{1728} : y^2 = x^3 - x$$

$$(j_1 = 64i + 55, \quad j_2 = 99i + 107, \quad j_3 = 5i + 109)$$

An endomorphism on E_{120} is given by $\theta_{120} \in \text{End}(E)$ as follows:

$$\theta_{120}(x,y) = \left(\frac{(122i+167)x^{288} + (17i+68)x^{287} + \dots + 174i+157}{x^{287} + (78i+156)x^{286} + \dots + (16i+54)}, \frac{(69i+109)x^{431} + (60i+178)x^{430} + \dots + 98i+124}{x^{431} + (146i+53)x^{430} + \dots + (44i+89)}y\right).$$

An endomorphism on E_{120} is given by $\theta_{120} \in \text{End}(E)$ as follows:

$$\theta_{120}(x,y) = \left(\frac{(122i+167)x^{288} + (17i+68)x^{287} + \dots + 174i+157}{x^{287} + (78i+156)x^{286} + \dots + (16i+54)}, \frac{(69i+109)x^{431} + (60i+178)x^{430} + \dots + 98i+124}{x^{431} + (146i+53)x^{430} + \dots + (44i+89)}y\right).$$

Replacing θ_{120} by $\theta_{120}+[-10]$ yields

$$\theta_{120}(x,y) = \left(\frac{159x^{188} + (29i + 65)x^{187} + \dots + 74i + 78}{x^{187} + (97i + 131)x^{186} + \dots + (161i + 162)}, \frac{126ix^{281} + (163i + 30)x^{280} + \dots + 99i + 154}{x^{281} + (85i + 105)x^{280} + \dots + (36i + 106)}y\right).$$

An endomorphism on E_{120} is given by $\theta_{120} \in \text{End}(E)$ as follows:

$$\theta_{120}(x,y) = \left(\frac{(122i+167)x^{288} + (17i+68)x^{287} + \dots + 174i+157}{x^{287} + (78i+156)x^{286} + \dots + (16i+54)}, \frac{(69i+109)x^{431} + (60i+178)x^{430} + \dots + 98i+124}{x^{431} + (146i+53)x^{430} + \dots + (44i+89)}y\right).$$

Replacing $heta_{120}$ by $heta_{120} + [-10]$ yields

$$\theta_{120}(x,y) = \left(\frac{159x^{188} + (29i + 65)x^{187} + \dots + 74i + 78}{x^{187} + (97i + 131)x^{186} + \dots + (161i + 162)}, \frac{126ix^{281} + (163i + 30)x^{280} + \dots + 99i + 154}{x^{281} + (85i + 105)x^{280} + \dots + (36i + 106)}y\right).$$

This has the desired normal form and is not divisible by 2, with

$$\mathsf{disc}(\theta_{120}) = 4^2(-47) \ .$$

So we orient E by $K = \mathbb{Q}(\sqrt{-47})$.

An endomorphism on E_{120} is given by $\theta_{120} \in \text{End}(E)$ as follows:

$$\theta_{120}(x,y) = \left(\frac{(122i+167)x^{288} + (17i+68)x^{287} + \dots + 174i+157}{x^{287} + (78i+156)x^{286} + \dots + (16i+54)}, \frac{(69i+109)x^{431} + (60i+178)x^{430} + \dots + 98i+124}{x^{431} + (146i+53)x^{430} + \dots + (44i+89)}y\right).$$

Replacing θ_{120} by $\theta_{120}+[-10]$ yields

$$\theta_{120}(x,y) = \left(\frac{159x^{188} + (29i + 65)x^{187} + \dots + 74i + 78}{x^{187} + (97i + 131)x^{186} + \dots + (161i + 162)}, \frac{126ix^{281} + (163i + 30)x^{280} + \dots + 99i + 154}{x^{281} + (85i + 105)x^{280} + \dots + (36i + 106)}y\right).$$

This has the desired normal form and is not divisible by 2, with

$$\mathsf{disc}(\theta_{120}) = 4^2(-47) \ .$$

So we orient E by $K = \mathbb{Q}(\sqrt{-47})$.

We find that θ_{120} is divisible by 2 (in fact by 2^2), so up we go!

We compute the blue path from 120 to the rim:

$$(E_{120}, \theta_{120}) \xrightarrow{\varphi_{120}} (E_{171}, \theta_{171}) \xrightarrow{\varphi_{171}} (E_{5i+109}, \theta_{5i+109})$$

We compute the blue path from 120 to the rim:

$$(E_{120}, \theta_{120}) \xrightarrow{\varphi_{120}} (E_{171}, \theta_{171}) \xrightarrow{\varphi_{171}} (E_{5i+109}, \theta_{5i+109})$$

$$\varphi_{120}(x,y) = \left(\frac{45x^2 + (-75i - 1)x + (-33i - 73)}{x + (58i - 4)}, \frac{67x^2 + (75i + 1)x + (-48i + 24)}{x^2 + (-63i - 8)x + (73i + 53)}y\right).$$

We compute the blue path from 120 to the rim:

$$(E_{120}, \theta_{120}) \xrightarrow{\varphi_{120}} (E_{171}, \theta_{171}) \xrightarrow{\varphi_{171}} (E_{5i+109}, \theta_{5i+109})$$

$$\varphi_{120}(x,y) = \left(\frac{45x^2 + (-75i - 1)x + (-33i - 73)}{x + (58i - 4)}, \frac{67x^2 + (75i + 1)x + (-48i + 24)}{x^2 + (-63i - 8)x + (73i + 53)}y\right).$$

$$E_{171}: y^2 = x^3 + (120i + 119)x + (66i + 112)$$

We compute the blue path from 120 to the rim:

$$(E_{120}, \theta_{120}) \xrightarrow{\varphi_{120}} (E_{171}, \theta_{171}) \xrightarrow{\varphi_{171}} (E_{5i+109}, \theta_{5i+109})$$

$$\varphi_{120}(x,y) = \left(\frac{45x^2 + (-75i - 1)x + (-33i - 73)}{x + (58i - 4)}, \frac{67x^2 + (75i + 1)x + (-48i + 24)}{x^2 + (-63i - 8)x + (73i + 53)}y\right).$$

$$E_{171}: y^2 = x^3 + (120i + 119)x + (66i + 112)$$

$$\theta_{171} = \tfrac{1}{2}\,\varphi_{120}\theta_{120}\widehat{\varphi_{120}} \text{ with } \varphi_{120}\theta_{120}\widehat{\varphi_{120}} \text{ divisible by } 2^2.$$

We compute the blue path from 120 to the rim:

$$(E_{120}, \theta_{120}) \xrightarrow{\varphi_{120}} (E_{171}, \theta_{171}) \xrightarrow{\varphi_{171}} (E_{5i+109}, \theta_{5i+109})$$

$$\varphi_{120}(x,y) = \left(\frac{45x^2 + (-75i - 1)x + (-33i - 73)}{x + (58i - 4)}, \frac{67x^2 + (75i + 1)x + (-48i + 24)}{x^2 + (-63i - 8)x + (73i + 53)}y\right).$$

$$E_{171}: y^2 = x^3 + (120i + 119)x + (66i + 112)$$

$$\theta_{171} = \tfrac{1}{2}\,\varphi_{120}\theta_{120}\widehat{\varphi_{120}} \text{ with } \varphi_{120}\theta_{120}\widehat{\varphi_{120}} \text{ divisible by } 2^2.$$

$$\varphi_{171}(x,y) = \left(\frac{45x^2 + (-75i + 12)x + (89i + 85)}{x + (58i + 48)}, \frac{67x^2 + (75i - 12)x + (-25i - 4)}{x^2 + (-63i - 83)x + (19i + 14))}y\right).$$

We compute the blue path from 120 to the rim:

$$(E_{120}, \theta_{120}) \xrightarrow{\varphi_{120}} (E_{171}, \theta_{171}) \xrightarrow{\varphi_{171}} (E_{5i+109}, \theta_{5i+109})$$

$$\varphi_{120}(x,y) = \left(\frac{45x^2 + (-75i - 1)x + (-33i - 73)}{x + (58i - 4)}, \frac{67x^2 + (75i + 1)x + (-48i + 24)}{x^2 + (-63i - 8)x + (73i + 53)}y\right).$$

$$E_{171}: y^2 = x^3 + (120i + 119)x + (66i + 112)$$

$$\theta_{171}=\tfrac{1}{2}\,\varphi_{120}\theta_{120}\widehat{\varphi_{120}} \text{ with } \varphi_{120}\theta_{120}\widehat{\varphi_{120}} \text{ divisible by } 2^2.$$

$$\varphi_{171}(x,y) = \left(\frac{45x^2 + (-75i + 12)x + (89i + 85)}{x + (58i + 48)}, \frac{67x^2 + (75i - 12)x + (-25i - 4)}{x^2 + (-63i - 83)x + (19i + 14))}y\right).$$

$$E_{5i+109}: y^2 = x^3 + (120i + 69)x + (5i + 43)$$

We compute the blue path from 120 to the rim:

$$(E_{120}, \theta_{120}) \xrightarrow{\varphi_{120}} (E_{171}, \theta_{171}) \xrightarrow{\varphi_{171}} (E_{5i+109}, \theta_{5i+109})$$

$$\varphi_{120}(x,y) = \left(\frac{45x^2 + (-75i - 1)x + (-33i - 73)}{x + (58i - 4)}, \frac{67x^2 + (75i + 1)x + (-48i + 24)}{x^2 + (-63i - 8)x + (73i + 53)}y\right).$$

$$E_{171}: y^2 = x^3 + (120i + 119)x + (66i + 112)$$

$$\theta_{171} = \frac{1}{2} \varphi_{120} \theta_{120} \widehat{\varphi_{120}}$$
 with $\varphi_{120} \theta_{120} \widehat{\varphi_{120}}$ divisible by 2^2 .

$$\varphi_{171}(x,y) = \left(\frac{45x^2 + (-75i + 12)x + (89i + 85)}{x + (58i + 48)}, \frac{67x^2 + (75i - 12)x + (-25i - 4)}{x^2 + (-63i - 83)x + (19i + 14))}y\right).$$

$$E_{5i+109}: y^2 = x^3 + (120i + 69)x + (5i + 43)$$

$$\theta_{5i+109} = \frac{1}{2} \, \varphi_{171} \theta_{171} \widehat{\varphi_{171}}$$
 with $\varphi_{171} \theta_{171} \widehat{\varphi_{171}}$ divisible by 2 but not by 2^2 .

We compute the blue path from 120 to the rim:

$$(E_{120}, \theta_{120}) \xrightarrow{\varphi_{120}} (E_{171}, \theta_{171}) \xrightarrow{\varphi_{171}} (E_{5i+109}, \theta_{5i+109})$$

where

$$\varphi_{120}(x,y) = \left(\frac{45x^2 + (-75i - 1)x + (-33i - 73)}{x + (58i - 4)}, \frac{67x^2 + (75i + 1)x + (-48i + 24)}{x^2 + (-63i - 8)x + (73i + 53)}y\right).$$

$$E_{171}: y^2 = x^3 + (120i + 119)x + (66i + 112)$$

$$\theta_{171} = \frac{1}{2} \varphi_{120} \theta_{120} \widehat{\varphi_{120}}$$
 with $\varphi_{120} \theta_{120} \widehat{\varphi_{120}}$ divisible by 2^2 .

$$\varphi_{171}(x,y) = \left(\frac{45x^2 + (-75i + 12)x + (89i + 85)}{x + (58i + 48)}, \frac{67x^2 + (75i - 12)x + (-25i - 4)}{x^2 + (-63i - 83)x + (19i + 14))}y\right).$$

$$E_{5i+109}: y^2 = x^3 + (120i + 69)x + (5i + 43)$$

$$\theta_{5i+109} = \frac{1}{2} \, \varphi_{171} \theta_{171} \widehat{\varphi_{171}}$$
 with $\varphi_{171} \theta_{171} \widehat{\varphi_{171}}$ divisible by 2 but not by 2².

So $(E_{5i+109}, \theta_{5i+109})$ is at the rim.

Step 3: Orient E_{1728} **by** K

$$\operatorname{End}(E_{1728}) = \mathbb{Z} + \mathbb{Z}[i] + \mathbb{Z} \frac{1+\pi}{2} + \mathbb{Z} \frac{[i](1+\pi)}{2},$$

where
$$[i](x,y) = (x,iy)$$
 and $\pi(x,y) = (x^{179},y^{179})$

(Algebraically,
$$[i]^2 = [-1], \ \pi^2 = [-179]$$
)

Step 3: Orient E_{1728} by K

$$\operatorname{End}(E_{1728}) = \mathbb{Z} + \mathbb{Z}[i] + \mathbb{Z} \frac{1+\pi}{2} + \mathbb{Z} \frac{[i](1+\pi)}{2},$$

where
$$[i](x,y) = (x,iy)$$
 and $\pi(x,y) = (x^{179},y^{179})$

(Algebraically,
$$[i]^2 = [-1], \ \pi^2 = [-179]$$
)

We orient E_{1728} by $K = \mathbb{Q}(\sqrt{-47})$, finding

$$\theta_{1728} = \frac{[i](1+\pi)}{2}$$

given by

$$\theta_{1728}(x,y) = \left(\frac{99x^{47} + 22x^{46} + \dots + 77}{x^{46} + 40x^{45} + \dots + 77}, \frac{113ix^{69} + 157ix^{68} + \dots + 63i}{x^{69} + 60x^{68} + \dots + 158}y\right).$$

Step 3: Orient E_{1728} **by** K

$$\operatorname{End}(E_{1728}) = \mathbb{Z} + \mathbb{Z}[i] + \mathbb{Z} \frac{1+\pi}{2} + \mathbb{Z} \frac{[i](1+\pi)}{2},$$

where
$$[i](x, y) = (x, iy)$$
 and $\pi(x, y) = (x^{179}, y^{179})$

(Algebraically,
$$[i]^2 = [-1], \ \pi^2 = [-179]$$
)

We orient E_{1728} by $K = \mathbb{Q}(\sqrt{-47})$, finding

$$\theta_{1728} = \frac{[i](1+\pi)}{2}$$

given by

$$\theta_{1728}(x,y) = \left(\frac{99x^{47} + 22x^{46} + \dots + 77}{x^{46} + 40x^{45} + \dots + 77}, \frac{113ix^{69} + 157ix^{68} + \dots + 63i}{x^{69} + 60x^{68} + \dots + 158}y\right).$$

Replacing θ_{1728} by $\theta_{1728} + [1]$ yields the normal form.

An alternative approach is to find an endomorphism $\theta'_{1728} \in \text{End}(E_{1728})$ as a product of $\{2,3\}$ -power-smooth isogenies:

An alternative approach is to find an endomorphism $\theta'_{1728} \in \text{End}(E_{1728})$ as a product of $\{2,3\}$ -power-smooth isogenies:

$$\theta'_{1728} = \psi_{171}\psi_{1728}$$
, of degree $3 \cdot 2^4$,

An alternative approach is to find an endomorphism $\theta'_{1728} \in \text{End}(E_{1728})$ as a product of $\{2,3\}$ -power-smooth isogenies:

$$\theta_{1728}' = \psi_{171}\psi_{1728}$$
, of degree $3\cdot 2^4$,

with $\psi_{171}: E_{171} \rightarrow E_{1728}$ of degree 3 given by

$$\psi_{171}(x,y) = \left(\frac{x^3 + (102i + 30)x^2 + (31i + 74)x + 10i + 158}{x^2 + (102i + 30)x + (98i + 130)}, \frac{x^3 + (153i + 45)x^2 + (3i + 88)x + 102i + 108}{x^3 + (153i + 45)x^2 + (115i + 32)x + (45i + 174)}y\right).$$

An alternative approach is to find an endomorphism $\theta'_{1728} \in \text{End}(E_{1728})$ as a product of $\{2,3\}$ -power-smooth isogenies:

$$\theta_{1728}' = \psi_{171}\psi_{1728}$$
, of degree $3\cdot 2^4$,

with $\psi_{171}: E_{171} \to E_{1728}$ of degree 3 given by

$$\psi_{171}(x,y) = \left(\frac{x^3 + (102i + 30)x^2 + (31i + 74)x + 10i + 158}{x^2 + (102i + 30)x + (98i + 130)}, \frac{x^3 + (153i + 45)x^2 + (3i + 88)x + 102i + 108}{x^3 + (153i + 45)x^2 + (115i + 32)x + (45i + 174)y}\right).$$

and $\psi_{1728}: E_{1728} \rightarrow E_{171}$ of degree 16 given by

$$\psi_{1728}(x,y) = \left(\frac{x^{16} + (156i + 63)x^{15} + \dots + 56i + 36}{x^{15} + (156i + 63)x^{14} + \dots + (10i + 71)}, \frac{x^{23} + (55i + 95)x^{22} + \dots + 105i + 82}{x^{23} + (55i + 95)x^{22} + \dots + (26i + 87)}y\right)$$

An alternative approach is to find an endomorphism $\theta'_{1728} \in \text{End}(E_{1728})$ as a product of $\{2,3\}$ -power-smooth isogenies:

$$\theta_{1728}' = \psi_{171}\psi_{1728}$$
, of degree $3\cdot 2^4$,

with $\psi_{171}: E_{171} \rightarrow E_{1728}$ of degree 3 given by

$$\psi_{171}(x,y) = \left(\frac{x^3 + (102i + 30)x^2 + (31i + 74)x + 10i + 158}{x^2 + (102i + 30)x + (98i + 130)}, \frac{x^3 + (153i + 45)x^2 + (3i + 88)x + 102i + 108}{x^3 + (153i + 45)x^2 + (115i + 32)x + (45i + 174)}y\right).$$

and $\psi_{1728}: E_{1728}
ightarrow E_{171}$ of degree 16 given by

$$\psi_{1728}(x,y) = \left(\frac{x^{16} + (156i + 63)x^{15} + \dots + 56i + 36}{x^{15} + (156i + 63)x^{14} + \dots + (10i + 71)}, \frac{x^{23} + (55i + 95)x^{22} + \dots + 105i + 82}{x^{23} + (55i + 95)x^{22} + \dots + (26i + 87)}y\right)$$

We find that ψ_{1728} , and hence θ'_{1728} is divisible by 2, so up we go!

We compute the red path from 1728 to the rim:

$$(E_{1728}, \theta_{1728}') \xrightarrow{\varphi_{1728}} (E_{22}, \theta_{22})$$

We compute the red path from 1728 to the rim:

$$(E_{1728}, \theta'_{1728}) \xrightarrow{\varphi_{1728}} (E_{22}, \theta_{22})$$

$$E_{22}: y^2 = x^3 + 168x + 14$$

We compute the red path from 1728 to the rim:

$$(E_{1728}, \theta'_{1728}) \xrightarrow{\varphi_{1728}} (E_{22}, \theta_{22})$$

where

$$E_{22}: y^2 = x^3 + 168x + 14$$

and, again in factored and already final form,

$$\theta_{22} = \psi_{174i+109}\psi_{22}$$
 of degree 12,

We compute the red path from 1728 to the rim:

$$(E_{1728}, \theta'_{1728}) \xrightarrow{\varphi_{1728}} (E_{22}, \theta_{22})$$

where

$$E_{22}: y^2 = x^3 + 168x + 14$$

and, again in factored and already final form,

$$\theta_{22} = \psi_{174i+109}\psi_{22}$$
 of degree 12, with isogenies

$$\psi_{174i+109}: E_{174i+109} \to E_{22} \text{ of degree 3,}$$

We compute the red path from 1728 to the rim:

$$(E_{1728}, \theta'_{1728}) \xrightarrow{\varphi_{1728}} (E_{22}, \theta_{22})$$

where

$$E_{22}: y^2 = x^3 + 168x + 14$$

and, again in factored and already final form,

 $\theta_{22} = \psi_{174i+109}\psi_{22}$ of degree 12, with isogenies

$$\psi_{174i+109}: E_{174i+109} \to E_{22}$$
 of degree 3,

$$\psi_{22} = \frac{1}{4} \, \sigma_{171} \psi_{1728} \widehat{\varphi_{1728}}$$
 of degree 4,

We compute the red path from 1728 to the rim:

$$(E_{1728}, \theta'_{1728}) \xrightarrow{\varphi_{1728}} (E_{22}, \theta_{22})$$

where

$$E_{22}: y^2 = x^3 + 168x + 14$$

and, again in factored and already final form,

 $\theta_{22} = \psi_{174i+109}\psi_{22}$ of degree 12, with isogenies

 $\psi_{174i+109}: E_{174i+109} \to E_{22} \text{ of degree 3,}$

 $\psi_{22} = \frac{1}{4} \, \sigma_{171} \psi_{1728} \widehat{\varphi_{1728}}$ of degree 4,

where $\sigma_{171}: E_{171} \to E_{174i+109}$ has degree 2.

We compute the red path from 1728 to the rim:

$$(E_{1728}, \theta'_{1728}) \xrightarrow{\varphi_{1728}} (E_{22}, \theta_{22})$$

where

$$E_{22}: y^2 = x^3 + 168x + 14$$

and, again in factored and already final form,

 $\theta_{22}=\psi_{174i+109}\psi_{22}$ of degree 12, with isogenies

$$\psi_{174i+109}: E_{174i+109} \to E_{22}$$
 of degree 3,

$$\psi_{22} = \frac{1}{4} \, \sigma_{171} \psi_{1728} \widehat{\varphi_{1728}}$$
 of degree 4,

where $\sigma_{171}: E_{171} \to E_{174i+109}$ has degree 2.

 θ_{22} is not divisible by 2, so (E_{22}, θ_{22}) is at the rim.

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[\mathfrak{l}]$, where \mathfrak{l} is a prime ideal above ℓ in the rim order.

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[\mathfrak{l}]$, where \mathfrak{l} is a prime ideal above ℓ in the rim order.

① The rim order is $\mathcal{O}_K = \mathbb{Z}[\omega]$ with $\omega = (1 + \sqrt{-47})/2$

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[\mathfrak{l}]$, where \mathfrak{l} is a prime ideal above ℓ in the rim order.

- **①** The rim order is $\mathcal{O}_K = \mathbb{Z}[\omega]$ with $\omega = (1 + \sqrt{-47})/2$
- ② Find $ho\in\mathsf{End}(\mathit{E}_{22})$ with $\iota_{\theta_{22}}(\omega)=
 ho$

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[\mathfrak{l}]$, where \mathfrak{l} is a prime ideal above ℓ in the rim order.

- **①** The rim order is $\mathcal{O}_K = \mathbb{Z}[\omega]$ with $\omega = (1 + \sqrt{-47})/2$
- ② Find $ho \in \operatorname{End}(E_{22})$ with $\iota_{\theta_{22}}(\omega) =
 ho$
- **3** A prime ideal above 2 is $l = 2\mathcal{O}_K + \omega \mathcal{O}_K$

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[\mathfrak{l}]$, where \mathfrak{l} is a prime ideal above ℓ in the rim order.

- The rim order is $\mathcal{O}_K = \mathbb{Z}[\omega]$ with $\omega = (1 + \sqrt{-47})/2$
- Find $\rho \in \text{End}(E_{22})$ with $\iota_{\theta_{22}}(\omega) = \rho$
- **a** A prime ideal above 2 is $l = 2O_K + \omega O_K$
- **②** $E_{22}[\mathfrak{l}] = \ker([2]) \cap \ker(\rho)$

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[\mathfrak{l}]$, where \mathfrak{l} is a prime ideal above ℓ in the rim order.

- **①** The rim order is $\mathcal{O}_{\mathcal{K}}=\mathbb{Z}[\omega]$ with $\omega=(1+\sqrt{-47})/2$
- **a** A prime ideal above 2 is $l = 2O_K + \omega O_K$
- $E_{22}[I] = \ker([2]) \cap \ker(\rho) = E_{22}[2] \cap \ker(\rho)$

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[\mathfrak{l}]$, where \mathfrak{l} is a prime ideal above ℓ in the rim order.

- The rim order is $\mathcal{O}_K = \mathbb{Z}[\omega]$ with $\omega = (1 + \sqrt{-47})/2$
- Find $\rho \in \text{End}(E_{22})$ with $\iota_{\theta_{22}}(\omega) = \rho$
- A prime ideal above 2 is $l = 2O_K + \omega O_K$
- \bullet $E_{22}[\mathfrak{l}] = \ker([2]) \cap \ker(\rho) = E_{22}[2] \cap \ker(\rho) = \ker(\rho|_{E_{22}[2]})$

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[I]$, where I is a prime ideal above ℓ in the rim order.

- **①** The rim order is $\mathcal{O}_K = \mathbb{Z}[\omega]$ with $\omega = (1 + \sqrt{-47})/2$
- ② Find $\rho \in \operatorname{End}(E_{22})$ with $\iota_{\theta_{22}}(\omega) = \rho$
- **3** A prime ideal above 2 is $l = 2O_K + \omega O_K$
- $E_{22}[\mathfrak{I}] = \ker([2]) \cap \ker(\rho) = E_{22}[2] \cap \ker(\rho) = \ker(\rho|_{E_{22}[2]})$ $E_{22}[2] = \{\infty, (2,0), (156i+178,0), (23i+178,0)\}$

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[I]$, where I is a prime ideal above ℓ in the rim order.

- **1** The rim order is $\mathcal{O}_K = \mathbb{Z}[\omega]$ with $\omega = (1 + \sqrt{-47})/2$
- ② Find $\rho \in \operatorname{End}(E_{22})$ with $\iota_{\theta_{22}}(\omega) = \rho$
- **3** A prime ideal above 2 is $l = 2O_K + \omega O_K$
- $E_{22}[\mathfrak{I}] = \ker([2]) \cap \ker(\rho) = E_{22}[2] \cap \ker(\rho) = \ker(\rho|_{E_{22}[2]})$ $E_{22}[2] = \{\infty, (2,0), (156i + 178,0), (23i + 178,0)\}$ $E_{22}[\mathfrak{I}] = \{\infty, (156i + 178,0)\}$

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[\mathfrak{l}]$, where \mathfrak{l} is a prime ideal above ℓ in the rim order.

- The rim order is $\mathcal{O}_K = \mathbb{Z}[\omega]$ with $\omega = (1 + \sqrt{-47})/2$
- Find $\rho \in \text{End}(E_{22})$ with $\iota_{\theta_{22}}(\omega) = \rho$
- **a** A prime ideal above 2 is $l = 2O_K + \omega O_K$
- $E_{22}[2] = {\infty, (2,0), (156i + 178,0), (23i + 178,0)}$ $E_{22}[\mathfrak{l}] = \{\infty, (156i + 178, 0)\}$
- **1** The isogeny on E_{22} with kernel $E_{22}[\mathfrak{l}]$ is

$$\varphi_{22}: E_{22} \to E_{99i+107}: y^2 = x^3 + (26i + 88)x + (141i + 104)$$

Start walking the rim from (E_{22}, θ_{22}) via the oriented class group action.

First step: compute, via Vélu's formulas, the isogeny φ_{22} with kernel $E_{22}[I]$, where I is a prime ideal above ℓ in the rim order.

- **1** The rim order is $\mathcal{O}_K = \mathbb{Z}[\omega]$ with $\omega = (1 + \sqrt{-47})/2$
- ② Find $\rho \in \operatorname{End}(E_{22})$ with $\iota_{\theta_{22}}(\omega) = \rho$
- **3** A prime ideal above 2 is $l = 2O_K + \omega O_K$
- $E_{22}[\mathfrak{I}] = \ker([2]) \cap \ker(\rho) = E_{22}[2] \cap \ker(\rho) = \ker(\rho|_{E_{22}[2]})$ $E_{22}[2] = \{\infty, (2,0), (156i + 178,0), (23i + 178,0)\}$ $E_{22}[\mathfrak{I}] = \{\infty, (156i + 178,0)\}$
- **1** The isogeny on E_{22} with kernel $E_{22}[\mathfrak{l}]$ is

$$\varphi_{22}: E_{22} \to E_{99i+107}: y^2 = x^3 + (26i + 88)x + (141i + 104)$$

1 The induced endomorphism on $E_{99i+107}$ is $\theta_{99i+107} = \frac{1}{2} \varphi_{22} \theta_{22} \widehat{\varphi_{22}}$

With this technique, we can in fact compute the *entire* rim:

$$E_{22} \xrightarrow{\varphi_{22}} E_{99i+107} \xrightarrow{\varphi_{99i+107}} E_{5i+109} \xrightarrow{\varphi_{5i+109}} E_{174i+109}$$
$$\xrightarrow{\varphi_{174i+109}} E_{80i+107} \xrightarrow{\varphi_{80i+107}} E'_{22} \cong E_{22}$$

of length 5, where each curve E_j has an attached endomorphism θ_j (not written here).

With this technique, we can in fact compute the *entire* rim:

$$E_{22} \xrightarrow{\varphi_{22}} E_{99i+107} \xrightarrow{\varphi_{99i+107}} E_{5i+109} \xrightarrow{\varphi_{5i+109}} E_{174i+109}$$
$$\xrightarrow{\varphi_{174i+109}} E_{80i+107} \xrightarrow{\varphi_{80i+107}} E'_{22} \cong E_{22}$$

of length 5, where each curve E_j has an attached endomorphism θ_j (not written here).

Note: $K = \mathbb{Q}(\sqrt{-47})$ has class number 5, and the ideal class of \mathfrak{l} generates $\mathrm{Cl}(K)$.

With this technique, we can in fact compute the *entire* rim:

$$E_{22} \xrightarrow{\varphi_{22}} E_{99i+107} \xrightarrow{\varphi_{99i+107}} E_{5i+109} \xrightarrow{\varphi_{5i+109}} E_{174i+109}$$
$$\xrightarrow{\varphi_{174i+109}} E_{80i+107} \xrightarrow{\varphi_{80i+107}} E'_{22} \cong E_{22}$$

of length 5, where each curve E_i has an attached endomorphism θ_i (not written here).

Note: $K = \mathbb{Q}(\sqrt{-47})$ has class number 5, and the ideal class of \mathfrak{l} generates CI(K).

Happily, $(E_{5i+109}, \theta_{5i+109})$ and (E_{22}, θ_{22}) lie on the same rim!

With this technique, we can in fact compute the entire rim:

$$E_{22} \xrightarrow{\varphi_{22}} E_{99i+107} \xrightarrow{\varphi_{99i+107}} E_{5i+109} \xrightarrow{\varphi_{5i+109}} E_{174i+109}$$
$$\xrightarrow{\varphi_{174i+109}} E_{80i+107} \xrightarrow{\varphi_{80i+107}} E'_{22} \cong E_{22}$$

of length 5, where each curve E_j has an attached endomorphism θ_j (not written here).

Note: $K = \mathbb{Q}(\sqrt{-47})$ has class number 5, and the ideal class of \mathfrak{l} generates $\mathsf{Cl}(K)$.

Happily, $(E_{5i+109}, \theta_{5i+109})$ and (E_{22}, θ_{22}) lie on the same rim!

A path from 120 to 1728 in $\mathcal{G}_2(179^2)$ is thus given by

$$E_{120} \xrightarrow{\varphi_{120}} E_{171} \xrightarrow{\varphi_{171}} E_{5i+109} \xrightarrow{\widehat{\varphi_{99i+107}}} g_{9i+107} \xrightarrow{\widehat{\varphi_{22}}} E_{22} \xrightarrow{\widehat{\varphi_{1728}}} E_{1728}$$

○ Standard elliptic curve stuff: point arithmetic, computing isogenies via Vélu, endomorphism translates $\theta + [n]$, torsion subgroups, isogeny kernels, dual isogenies, evaluating isogenies on ℓ -torsion points, composing isogenies

- ① Standard elliptic curve stuff: point arithmetic, computing isogenies via Vélu, endomorphism translates $\theta + [n]$, torsion subgroups, isogeny kernels, dual isogenies, evaluating isogenies on ℓ -torsion points, composing isogenies
- ② Dividing an endomorphism by ℓ to go up one level (McMurdy 2014 for $\ell=2$, ACLSST 2022 for $\ell>2$)

- **9** Standard elliptic curve stuff: point arithmetic, computing isogenies via Vélu, endomorphism translates $\theta + [n]$, torsion subgroups, isogeny kernels, dual isogenies, evaluating isogenies on ℓ -torsion points, composing isogenies
- ② Dividing an endomorphism by ℓ to go up one level (McMurdy 2014 for $\ell=2$, ACLSST 2022 for $\ell>2$)
- Carrying along orientations (i.e. computing induced orientations)

- **9** Standard elliptic curve stuff: point arithmetic, computing isogenies via Vélu, endomorphism translates $\theta + [n]$, torsion subgroups, isogeny kernels, dual isogenies, evaluating isogenies on ℓ -torsion points, composing isogenies
- ② Dividing an endomorphism by ℓ to go up one level (McMurdy 2014 for $\ell=2$, ACLSST 2022 for $\ell>2$)
- Carrying along orientations (i.e. computing induced orientations)
- Class group action (for walking rims)

- **9** Standard elliptic curve stuff: point arithmetic, computing isogenies via Vélu, endomorphism translates $\theta + [n]$, torsion subgroups, isogeny kernels, dual isogenies, evaluating isogenies on ℓ -torsion points, composing isogenies
- ② Dividing an endomorphism by ℓ to go up one level (McMurdy 2014 for $\ell=2$, ACLSST 2022 for $\ell>2$)
- Carrying along orientations (i.e. computing induced orientations)
- Class group action (for walking rims)
- \odot Computing an \mathcal{O} -orientation/endomorphism on a curve with known endomorphism ring (uses Cornacchia's algorithm)

- ① Standard elliptic curve stuff: point arithmetic, computing isogenies via Vélu, endomorphism translates $\theta + [n]$, torsion subgroups, isogeny kernels, dual isogenies, evaluating isogenies on ℓ -torsion points, composing isogenies
- ② Dividing an endomorphism by ℓ to go up one level (McMurdy 2014 for $\ell=2$, ACLSST 2022 for $\ell>2$)
- Carrying along orientations (i.e. computing induced orientations)
- Class group action (for walking rims)
- \odot Computing an \mathcal{O} -orientation/endomorphism on a curve with known endomorphism ring (uses Cornacchia's algorithm)
- Computing a primitive orientation from an orientation (not considered in Wesolowski 2022)

- ① Standard elliptic curve stuff: point arithmetic, computing isogenies via Vélu, endomorphism translates $\theta + [n]$, torsion subgroups, isogeny kernels, dual isogenies, evaluating isogenies on ℓ -torsion points, composing isogenies
- ② Dividing an endomorphism by ℓ to go up one level (McMurdy 2014 for $\ell=2$, ACLSST 2022 for $\ell>2$)
- Carrying along orientations (i.e. computing induced orientations)
- Class group action (for walking rims)
- \odot Computing an \mathcal{O} -orientation/endomorphism on a curve with known endomorphism ring (uses Cornacchia's algorithm)
- Computing a primitive orientation from an orientation (not considered in Wesolowski 2022)
- Factoring power-smooth isogenies

- ① Standard elliptic curve stuff: point arithmetic, computing isogenies via Vélu, endomorphism translates $\theta + [n]$, torsion subgroups, isogeny kernels, dual isogenies, evaluating isogenies on ℓ -torsion points, composing isogenies
- ② Dividing an endomorphism by ℓ to go up one level (McMurdy 2014 for $\ell=2$, ACLSST 2022 for $\ell>2$)
- Carrying along orientations (i.e. computing induced orientations)
- Class group action (for walking rims)
- \odot Computing an \mathcal{O} -orientation/endomorphism on a curve with known endomorphism ring (uses Cornacchia's algorithm)
- Computing a primitive orientation from an orientation (not considered in Wesolowski 2022)
- Factoring power-smooth isogenies
- Finding power-smooth suitable translates via sieving

- ① Standard elliptic curve stuff: point arithmetic, computing isogenies via Vélu, endomorphism translates $\theta + [n]$, torsion subgroups, isogeny kernels, dual isogenies, evaluating isogenies on ℓ -torsion points, composing isogenies
- ② Dividing an endomorphism by ℓ to go up one level (McMurdy 2014 for $\ell=2$, ACLSST 2022 for $\ell>2$)
- Carrying along orientations (i.e. computing induced orientations)
- Olass group action (for walking rims)
- **©** Computing an \mathcal{O} -orientation/endomorphism on a curve with known endomorphism ring (uses Cornacchia's algorithm)
- Computing a primitive orientation from an orientation (not considered in Wesolowski 2022)
- Factoring power-smooth isogenies
- Finding power-smooth suitable translates via sieving

Theorem 1 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$.

Theorem 1 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \operatorname{deg}(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose d is sufficiently large

Theorem 1 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose d is sufficiently large and θ can be evaluated efficiently on points on E.

Theorem 1 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose d is sufficiently large and θ can be evaluated efficiently on points on E. Let Δ' be the ℓ -fundamental factor of Δ ,

Theorem 1 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose d is sufficiently large and θ can be evaluated efficiently on points on E. Let Δ' be the ℓ -fundamental factor of Δ ,

• $\Delta = \ell^{2r} \Delta'$ where $v_{\ell}(\Delta') = 0$ or $v_{\ell}(\Delta') \in \{3,2\}$ if $\ell = 2 \mid \Delta$

Theorem 1 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose d is sufficiently large and θ can be evaluated efficiently on points on E. Let Δ' be the ℓ -fundamental factor of Δ , and assume that $|\Delta'| \leq p^{2+\varepsilon}$.

• $\Delta = \ell^{2r} \Delta'$ where $v_{\ell}(\Delta') = 0$ or $v_{\ell}(\Delta') \in \{3,2\}$ if $\ell = 2 \mid \Delta$

Theorem 1 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose d is sufficiently large and θ can be evaluated efficiently on points on E. Let Δ' be the ℓ -fundamental factor of Δ , and assume that $|\Delta'| < p^{2+\varepsilon}$. Then there is a heuristic classical algorithm that finds an ℓ -isogeny path of length $O(\log p + h_{\Delta'})$ from E to a curve of known endomorphism ring.

 $\bullet \Delta = \ell^{2r} \Delta'$ where $v_{\ell}(\Delta') = 0$ or $v_{\ell}(\Delta') \in \{3,2\}$ if $\ell = 2 \mid \Delta$

Theorem 1 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose d is sufficiently large and θ can be evaluated efficiently on points on E. Let Δ' be the ℓ -fundamental factor of Δ , and assume that $|\Delta'| \leq p^{2+\varepsilon}$. Then there is a heuristic classical algorithm that finds an ℓ -isogeny path of length $O(\log p + h_{\Delta'})$ from E to a curve of known endomorphism ring.

- $\Delta = \ell^{2r} \Delta'$ where $v_{\ell}(\Delta') = 0$ or $v_{\ell}(\Delta') \in \{3,2\}$ if $\ell = 2 \mid \Delta$
- $h_{\Delta'}$ is the class number of the quadratic order of discriminant Δ' ; $h_{\Delta'} < \sqrt{|\Delta'|} \log |\Delta'|/3$

Theorem 1 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose d is sufficiently large and θ can be evaluated efficiently on points on E. Let Δ' be the ℓ -fundamental factor of Δ , and assume that $|\Delta'| \leq p^{2+\varepsilon}$. Then there is a heuristic classical algorithm that finds an ℓ -isogeny path of length $O(\log p + h_{\Delta'})$ from E to a curve of known endomorphism ring.

Run time: $h_{\Delta'} \exp \left(C \sqrt{\log d \log \log d} \right) \text{ poly}(\log p)$.

- $\Delta = \ell^{2r} \Delta'$ where $v_{\ell}(\Delta') = 0$ or $v_{\ell}(\Delta') \in \{3,2\}$ if $\ell = 2 \mid \Delta$
- $h_{\Delta'}$ is the class number of the quadratic order of discriminant Δ' ; $h_{\Delta'} < \sqrt{|\Delta'|} \log |\Delta'|/3$

Theorem 1 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose d is sufficiently large and θ can be evaluated efficiently on points on E. Let Δ' be the ℓ -fundamental factor of Δ , and assume that $|\Delta'| \leq p^{2+\varepsilon}$. Then there is a heuristic classical algorithm that finds an ℓ -isogeny path of length $O(\log p + h_{\Delta'})$ from E to a curve of known endomorphism ring.

Run time: $h_{\Delta'} \exp \left(C \sqrt{\log d \log \log d} \right) \operatorname{poly}(\log p)$.

- $\Delta = \ell^{2r} \Delta'$ where $v_{\ell}(\Delta') = 0$ or $v_{\ell}(\Delta') \in \{3,2\}$ if $\ell = 2 \mid \Delta$
- $h_{\Delta'}$ is the class number of the quadratic order of discriminant Δ' ; $h_{\Delta'} < \sqrt{|\Delta'|} \log |\Delta'|/3$

Runtime improves to $h_{\Delta'} \operatorname{poly}(B) \log p$ if θ is given as a B-powersmooth product.

Theorem 2 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$.

Theorem 2 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose $d \ll |\Delta| < p^{2+\varepsilon}$

Theorem 2 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \operatorname{deg}(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose $d \ll |\Delta| \leq p^{2+\varepsilon}$ and θ can be evaluated efficiently on points on E.

Theorem 2 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \operatorname{deg}(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose $d \ll |\Delta| \leq p^{2+\varepsilon}$ and θ can be evaluated efficiently on points on E. Then there is a heuristic quantum algorithm that finds a smooth isogeny of norm $O(\sqrt{|\Delta|})$ (and hence a path) from E to a curve of known endomorphism ring.

Theorem 2 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \operatorname{deg}(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose $d \ll |\Delta| \leq p^{2+\varepsilon}$ and θ can be evaluated efficiently on points on E. Then there is a heuristic quantum algorithm that finds a smooth isogeny of norm $O(\sqrt{|\Delta|})$ (and hence a path) from E to a curve of known endomorphism ring.

Smoothness bound: $\exp(C\sqrt{\log|\Delta|\log\log|\Delta|})$.

Theorem 2 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \operatorname{deg}(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose $d \ll |\Delta| \leq p^{2+\varepsilon}$ and θ can be evaluated efficiently on points on E. Then there is a heuristic quantum algorithm that finds a smooth isogeny of norm $O(\sqrt{|\Delta|})$ (and hence a path) from E to a curve of known endomorphism ring.

Smoothness bound: $\exp(C\sqrt{\log|\Delta|\log\log|\Delta|})$.

Run time: $\exp(C'\sqrt{\log|\Delta|\log\log|\Delta|})$ poly $(\log p)$.

Theorem 2 (ACLSST 2022, La Matematica)

Let $\theta \in \operatorname{End}(E)$ have degree $d = \deg(\theta)$ and discriminant $\Delta = \operatorname{disc}(\theta)$. Suppose $d \ll |\Delta| \leq p^{2+\varepsilon}$ and θ can be evaluated efficiently on points on E. Then there is a heuristic quantum algorithm that finds a smooth isogeny of norm $O(\sqrt{|\Delta|})$ (and hence a path) from E to a curve of known endomorphism ring.

Smoothness bound: $\exp(C\sqrt{\log|\Delta|\log\log|\Delta|})$.

Run time: $\exp(C'\sqrt{\log|\Delta|\log\log|\Delta|})$ poly $(\log p)$.

The algorithm uses *vectorization* (Couveignes 2006) to solve the following new problem (not considered in Wesolowski 2022):

Primitive Orientation Problem

Given a supersingular elliptic curve E and an endomorphism θ on E, find the imaginary quadratic order \mathcal{O} so that the orientation ι_{θ} is \mathcal{O} -primitive.

Theorem 3 (ACLSST 2022, WIN5 Proceedings)

For any $r \ge 3$, there is a bijection between the following two sets:

- Primitive non-backtracking closed walks of length r in $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$;
- Directed rims of length r, identified with conjugates, in $\bigcup_{\mathcal{K}} \mathcal{G}_{\ell,\mathcal{K}}(\mathbb{F}_{p^2})$.

Theorem 3 (ACLSST 2022, WIN5 Proceedings)

For any $r \ge 3$, there is a bijection between the following two sets:

- Primitive non-backtracking closed walks of length r in $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$;
- Directed rims of length r, identified with conjugates, in $\bigcup_{\mathcal{K}} \mathcal{G}_{\ell,\mathcal{K}}(\mathbb{F}_{p^2})$.

Corollary 1

① The cardinality c_r of the sets of Theorem 3 is a weighted average of class numbers of certain imaginary quadratic orders.

Theorem 3 (ACLSST 2022, WIN5 Proceedings)

For any $r \ge 3$, there is a bijection between the following two sets:

- Primitive non-backtracking closed walks of length r in $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$;
- Directed rims of length r, identified with conjugates, in $\bigcup_{\mathcal{K}} \mathcal{G}_{\ell,\mathcal{K}}(\mathbb{F}_{p^2})$.

Corollary 1

- ① The cardinality c_r of the sets of Theorem 3 is a weighted average of class numbers of certain imaginary quadratic orders.
- ② If $p \equiv 1 \pmod{12}$, then $c_r \sim \ell^r/2r$ as $r \to \infty$ (expected count for Ramanujan graphs).

Theorem 3 (ACLSST 2022, WIN5 Proceedings)

For any $r \ge 3$, there is a bijection between the following two sets:

- Primitive non-backtracking closed walks of length r in $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$;
- Directed rims of length r, identified with conjugates, in $\bigcup_{\mathcal{K}} \mathcal{G}_{\ell,\mathcal{K}}(\mathbb{F}_{p^2})$.

Corollary 1

- ① The cardinality c_r of the sets of Theorem 3 is a weighted average of class numbers of certain imaginary quadratic orders.
- ② If $p \equiv 1 \pmod{12}$, then $c_r \sim \ell^r/2r$ as $r \to \infty$ (expected count for Ramanujan graphs).
- $c_r \leq \frac{2\pi e^{\gamma} \log(4\ell)}{3} \left(\log \log(2\sqrt{\ell}) + \frac{7}{3} + \log r \right) \ell^r + O(\ell^{3r/4} \log r),$ as $r \to \infty$, where the *O*-constant is explicit.

Conclusion

One endomorphism is enough for supersingular isogeny path finding:

- Classically, run time is subexponential in the degree and linear in a certain class number
- Significant improvement if the endomorphism is power-smooth
- Quantumly, the run time is subexponential in the discriminant of the endomorphism

Conclusion

One endomorphism is enough for supersingular isogeny path finding:

- Classically, run time is subexponential in the degree and linear in a certain class number
- Significant improvement if the endomorphism is power-smooth
- Quantumly, the run time is subexponential in the discriminant of the endomorphism

The algorithm finds a path to a curve E_0 with *known* endomorphism ring. For paths between arbitrary elliptic curves E, E':

- ① Construct a K-oriented path P from E to E_0
- ② Construct a K'-oriented path P from E' to E_0
- To Forget the orientations and construct the path $P\widehat{P'}$ from E to E', where $\widehat{P'}$ is P backwards with the dual isogenies as edges

Conclusion

One endomorphism is enough for supersingular isogeny path finding:

- Classically, run time is subexponential in the degree and linear in a certain class number
- Significant improvement if the endomorphism is power-smooth
- Quantumly, the run time is subexponential in the discriminant of the endomorphism

The algorithm finds a path to a curve E_0 with *known* endomorphism ring. For paths between arbitrary elliptic curves E, E':

- ① Construct a K-oriented path P from E to E_0
- ② Construct a K'-oriented path P from E' to E_0
- **Solution** Forget the orientations and construct the path PP' from E to E', where P' is P backwards with the dual isogenies as edges

Oriented rims of any length r are in bijection with un-oriented primitive closed walks of length r.

References

 Sarah Arpin, Mingjie Chen, Kristin E. Lauter, Renate Scheidler, Katherine E. Stange and Ha T. N. Tran
 Orienteering with one endomorphism arXiv:2201.11079v3 [math.NT]
 To appear in La Mathematica

 Sarah Arpin, Mingjie Chen, Kristin E. Lauter, Renate Scheidler, Katherine E. Stange and Ha T. N. Tran
 Orientations and cycles in supersingular isogeny graphs arXiv:2205.03976 [math.NT]

To appear in Research Directions in Number Theory — Proceedings of Women in Numbers 5

That's All, Folks!

Thank You — Questions (or Answers)?