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A wonderful theorem

“Numbers are everywhere”, Plato Joshua Males 2023.

“Modular forms are everywhere”, Don Zagier 2016.

Theorem
Numbers are modular forms!
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”Objects”

Suppose you come across some sequence of numbers in the wild from

your work

• Number of partitions (maybe with some particular statistic fixed) in

combinatorics

• Topological invariants e.g. Betti numbers

• Vafa–Witten invariants

• Knot invariants

• Black hole invariants

A common question is: ”How quickly does my sequence grow”?
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Generating functions

The philosophy (Zagier): Always form the generating function

C (q) =
∑
n≥1

c(n)qn

with q a (for now) formal variable. Scale it so that it has radius of

convergence 1 for convenience.

The idea is to then use properties of generating functions to obtain more

information on c(n). Often, these generating functions turn out to be

examples of modular forms (or other types of modular objects).
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(Elliptic) Modular forms

A (holomorphic) modular form f of weight k ∈ Z for a congruence

subgroup Γ of SL2(Z) is a function that satisfies

1. f is holomorphic on Γ\H

2. f (Mτ) = (cτ + d)k f (τ) for all M =
(
a b
c d

)
in Γ

3. A growth condition toward all cusps of Γ\H

There is a natural extension to modular forms twisted by characters, to

half-integral weight, and many other types of modular forms.
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Why are modular forms wonderful?

Lots of reasons!

• Their coefficients are often interesting arithmetic objects. As Zagier

likes to say, modular forms are everywhere

• For a fixed weight and level, the infinite symmetries forces the vector

space of modular forms to be finite-dimensional. This means that

there are many beautiful relations satisfied between different forms,

and therefore the coefficients that we care about. E.g. Hurwitz class

numbers ∑
n∈Z

(
t − n2

)
H
(
4t − n2

)
=
∑
a,b∈N
ab=t

min (a, b)3 .

• The transformation behaviour allows us to closely estimate their

behaviour at certain points (useful for today’s topics)
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A prototypical example

A partition of a natural number n is a non-increasing list of positive

integers λj such that
∑

j λj = n. Let p(n) be the number of partitions of

n.

Example
E.g. the partitions of 4 are

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1) so p(4) = 5.

How quickly does p(n) grow?

n p(n)

4 5

10 42

40 37,338

100 190,569,292

Want a method to either approximate (well) or count exactly the number

of partitions.
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A wild modular form appears!

It turns out that by setting q = e2πiτ with τ ∈ H we get

∑
n≥1

p(n)qn =
q

1
24

η(τ)
=

1∏
n≥1(1− qn)

where η(τ) is the Dedekind eta-function, a prototypical example of a

modular form of weight 1
2 .

Using this, we can get a lot more information on the asymptotics of the

coefficients p(n).

Theorem (Hardy–Ramanujan)
As n → ∞ we have

p(n) ∼ 1

4
√
3n

eπ
√

2n
3
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The Circle Method

The coefficients c(n) of a Fourier expansion C (q) =
∑

n≥0 c(n)q
n can be

recovered as

c(n) =
1

2πi

∫
C

C (q)q−n dq

q

where C is a circle of radius less than 1 transversed once in the

anticlockwise direction.

Often, there are singularities of C (q) when q is a root of unity, which can

be estimated well using modular-type arguments. One then collects all of

these terms together to obtain an asymptotic estimate for c(n).

In many applications, the pole at q = 1 gives the largest growth and we

call it the dominant pole. No particular need for this to be at 1.

8
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Rademacher’s exact formula

The Circle Method is so powerful that Rademacher obtained an exact

formula for p(n).

Theorem
For all n we have

p(n) =
π

2
5
4 3

3
4N

3
4

∞∑
k=1

Ak(n)

k
I 3
2

(
π

k

√
2N

3

)
,

where Iν is the usual I -Bessel function and

Ak(n) :=
∑

0≤h<k
gcd(h,k)=1

eπis(h,k)−
2πinh

k

is a Kloosterman sum with s(h, k) the usual Dedekind sum.
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Wright’s Circle Method (WCM)

Wright’s Circle Method is a trade-off. We throw all poles that do not

give the largest growth (i.e. all poles that are not dominant) into an error

term along minor arcs.

We trade ease of calculation for less information. Now we only get an

asymptotic with an error term, and lose the possibility of exact formulae.

Works really well when there are finitely many dominant main terms that

always beat error terms for large n.

Works really well for modular objects and objects arising from infinite

products. What about other objects?

10



Wright’s Circle Method (WCM)

Wright’s Circle Method is a trade-off. We throw all poles that do not

give the largest growth (i.e. all poles that are not dominant) into an error

term along minor arcs.

We trade ease of calculation for less information. Now we only get an

asymptotic with an error term, and lose the possibility of exact formulae.

Works really well when there are finitely many dominant main terms that

always beat error terms for large n.

Works really well for modular objects and objects arising from infinite

products. What about other objects?

10



Wright’s Circle Method (WCM)

Wright’s Circle Method is a trade-off. We throw all poles that do not

give the largest growth (i.e. all poles that are not dominant) into an error

term along minor arcs.

We trade ease of calculation for less information. Now we only get an

asymptotic with an error term, and lose the possibility of exact formulae.

Works really well when there are finitely many dominant main terms that

always beat error terms for large n.

Works really well for modular objects and objects arising from infinite

products. What about other objects?

10



Wright’s Circle Method (WCM)

Wright’s Circle Method is a trade-off. We throw all poles that do not

give the largest growth (i.e. all poles that are not dominant) into an error

term along minor arcs.

We trade ease of calculation for less information. Now we only get an

asymptotic with an error term, and lose the possibility of exact formulae.

Works really well when there are finitely many dominant main terms that

always beat error terms for large n.

Works really well for modular objects and objects arising from infinite

products.

What about other objects?

10



Wright’s Circle Method (WCM)

Wright’s Circle Method is a trade-off. We throw all poles that do not

give the largest growth (i.e. all poles that are not dominant) into an error

term along minor arcs.

We trade ease of calculation for less information. Now we only get an

asymptotic with an error term, and lose the possibility of exact formulae.

Works really well when there are finitely many dominant main terms that

always beat error terms for large n.

Works really well for modular objects and objects arising from infinite

products. What about other objects?

10



Nahm sums

A Nahm sum is a sum of the form∑
n1,n2,...,nr≥0

q
1
2 n

TAn

(q; q)n1(q; q)n2 · · · (q; q)nr

with (a; q)n =
∏n−1

k=0(1− aqk) the usual q-Pochhammer symbol.

They appear in many places throughout mathematics. For example in

conformal field theory, algebraic K-theory, and of course number theory.

Examples include many of Ramanujan’s mock theta functions.
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σ(q)

One of the most famous examples of a Nahm-type sum is

σ(q) =
∞∑
n=0

q
n(n+1)

2

(−q; q)n
=:

∞∑
n=0

S(n)qn,

found in Ramanujan’s “Lost” Notebook.

The coefficients S(n) of σ(q) count the difference between the number

of partitions into distinct parts with even and odd rank. Andrews

conjectured

Conjecture (Conjecture 1)
lim sup |S(n)| = +∞.

Conjecture (Conjecture 2)
S(n) = 0 for infinitely many n.
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The sequence S(n)

The sequence S(n) are relatively integers, beginning with

1, 1,−1, 2,−2, 1, 0, 1,−2, 0, 2, 0,−1,−2, 2, 1, 0,−2, 2,−2, . . .

While the lim sup is growing, it is doing so at a pretty slow speed. For

example, S(45) = 4, and S(1609) = 6.

Compare this with the exponential growth of partitions; S(100) = 1 while

p(100) = 190, 569, 292.
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p(100) = 190, 569, 292.

13



σ(q)

By showing a deep connection between σ(q) and its so-called companion

σ∗(q) along with the arithmetic of Q(
√
6), extending beyond their

combinatorial interpretations, Andrews-Dyson-Hickerson succeeded in

proving Andrews’ two conjectures on σ(q).

For example, we now know that S(n) may also be defined by a Hecke

L-function, a certain sum over ideals in Z[
√
6]. The coefficients were also

very important in Cohen/Zwegers’ construction of an important new

class of objects - mock Maass waveforms.
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A ”forgotten Nahm-type sum”

In the same paper as σ appears, we see the function

v1(q) :=
∑
n≥0

qn(n+1)/2

(−q2; q2)n
=:

∑
n≥0

V1(n)q
n,

(alongside similar functions v2, v3, v4).

The function v1(q) admits a similar combinatorial interpretation to σ(q):

its coefficients V1(n) count the difference between the number of

odd-even partitions of n with rank ≡ 0 (mod 4) and ≡ 2 (mod 4).
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Four conjectures of Andrews

Conjecture
We have that |V1(n)| → ∞ as n → ∞.

Conjecture
For almost all n, V1(n),V1(n + 1),V1(n + 2) and V1(n + 3) are two

positive and two negative numbers.

Conjecture
For n ≥ 5 there is an infinite sequence

N5 = 293,N6 = 410,N7 = 545,N8 = 702, . . . ,Nn ≥ 10n2, . . . such that

V1(Nn),V1(Nn + 1),V1(Nn + 2) all have the same sign.

Conjecture
The numbers |V1(Nn)|, |V1(Nn + 1)|, |V1(Nn + 2)| contain a local

minimum of the sequence |V1(j)|.
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Figure 1: Our conjectured approximation
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Projected theorems

We believe we can prove the following.

Theorem (Folsom, M., Rolen, Storzer)
The first two conjectures of Andrews are true.

We believe a slight modification of the first conjecture is needed, to say

instead that “as n → ∞, almost all values of n are such that

|V1(n)| → ∞”.
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Projected theorems

We do not believe that we can prove the third and fourth conjectures.

However, we do believe that we can explain them (in a sense that will

become clear later).

Our explanation of the third conjecture relies on irrationality properties of

ζQ(
√
−3)(2). With an assumption on this, we are able to make progress on

the third conjecture.
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Asymptotics

Our starting idea: just use Wright’s Circle Method to try to obtain the

asymptotic behaviour of V1(n). This should be enough to prove Andrews

conjectures.

Issues: Nahm-type sum, not infinite product. Modularity properties

unknown.

This means our usual techniques will not work, and we need new

approaches. As with all Cirlce Method approaches, we want to know the

behaviour of v1(q) toward roots of unity.
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Asymptotics

Lemma
Let ζN := e2πi/N . For any root of unity ζℓm with gcd(ℓ,m) = 1 and 4 ∤ m,

we have that

v1(ζ
ℓ
m) = 2

m−1∑
s=0

ζ
ℓs(s+1)
2m

(−ζ2ℓm ; ζ2ℓm )s
.

This is just some number, so we only need to worry about 4-mth roots of

unity.
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Matthias Magic

Through some wizadry that I don’t claim to know, Matthias Storzer

made the following conjecture (almost proved).

If 4|n, write m = n/4. Then as z → 0, on a ray in the right half-plane

with 0 ̸= arg z ∈ (−π
2 ,

π
2 )

v1(ζne
−z) =


e

V
zm2

( z

2πi

)−1/2

(γ
(α)
1 + O(z)) if arg(z) > 0

e
−V

zm2

(
−z

2πi

)−1/2

(γ
(α)
2 + O(z)) if arg(z) < 0

where, with the Bloch-Wigner dilogarithm D,

V = D(e(1/6))i/8 = 0.1268877 . . . i ,

and γ
(α)
1 , γ

(α)
2 ∈ C.

Note that m = 1 (so n = 4) is meant to give the largest growth, i.e.

toward ±i our function grows the quickest.
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Who’s That Pokémon?

What is |V | = 0.1268877 . . .?

It turns out that |V | = G
8 , where G is Gieseking’s constant. Lots of nice

formulae for this in terms of special integrals etc, but nothing that

revealed the structure we wanted.

After a lot more hunting, results of Milnor give

|V | =
9
√
3ζQ(

√
−3)(2)

2π2
,

where ζK is the usual Dedekind zeta function associated with the field K .
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Idea of the proof

Without too many spoilers, here’s a quick idea of the proof:

• Integrals are easier than sums. Determine a new contour integral

representation of v1(q) over a complicated contour.

• Taking care of various branch cuts and poles/residues, make some

changes of variable to massage the integral into a nicer form.

• Split into three integral pieces, each of which should have different

properties.

• Use a precise version of the stationary phase method (saddle-point

method) to determine the asymptotic behaviour of the function

toward fourth roots of unity
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Circle Method time

Now we want to apply Wright’s Circle Method. We have two options;

• Major arcs around ±i and minor arcs everywhere else

• Major arcs around all 4m-th roots of unity, minor arcs elsewhere.

Recall that toward roots of unity of order 4 ∤ n, we have v1(ζn) is

constant. It is also possible to show that toward e iθ with θ irrational then

v1(q) has growth of order eo(
√
n) using classical arguments of

Hardy–Ramanujan.

This justifies placing major arcs around 4m-th roots of unity, and minor

arcs elsewhere. For now, just think about major arcs around ±i .
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Circle Method time

Write

V1(n) =
1

2πi

∫
C

v1(q)

qn
dq

q
.

Now let ∫
C

=

∫
C1

+

∫
C2

+

∫
C−C1−C2

,

where C1 is a major arc around i , C2 is a major arc around −i , and

everything else is a minor arc.
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Circle Method time

Consider the term M1(n) :=
1

2πi

∫
C1

v1(q)
qn+1 dq.

Choose the radius of the circle C to be e−λ with λ :=
√

|V |
n . Then the

arc C1 is described by ie−λ+iθ with θ ∈ (−δ, δ).

Make the change of variable q = ie−z and parameterize where z runs

from λ+ iδ to λ− iδ, to obtain

M1(n) = − (−i)n

2πi

∫ λ−iδ

λ+iδ

v1 (ie
−z)

e−zn
dz =

(−i)n

2πi

∫ λ+iδ

λ−iδ

v1 (ie
−z)

e−zn
dz .
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Circle Method time

Thanks to Matthias’ magic conjecture, we now have an asymptotic to

plug in for v1(ie
−z)!

Letting δ = λ and making a change of variable, plugging in and

rearranging (and ignoring some constants) gives us combinations of

integrals of the shape ∫ √
|V |(1+i)

√
|V |(1−i)

e
√
n( V

z +z)z−
1
2 dz .

Looks more complicated! But now this integral is amenable to the

saddle-point method again.
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The output on the major arcs

Ignoring all the horrible details, doing this for ±i we should obtain that

V1(n) ∼( (−i)nβ1

2
√
πn

e2
√
nV +

in−1β1

2
√
πn

e2
√
−nV +

(−i)nβ2

2
√
nπ

e2
√
−nV +

in+1β2

2
√
πn

e2
√
nV

)
(1 + O(n− 1

2 )).

Not particularly satisfying or useful yet, we need an error term from minor arcs

on the right. Luckily, the error term is much easier. Just plug in an estimate of

v1(q) near 8-th order roots of unity and crudely estimate to get

O

(
n− 1

2 e

√
n|V |
2

)
.
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So we’re done, right?

Looks like we’re in good shape, after all we found exponential growth,

right?

No! This asymptotic has oscillation. This becomes more clear if we tidy

things up a bit to get

V1(n) ∼ γ
e
√

2|V |n
√
πn

(−1)⌊
n
2 ⌋
(
cos(

√
2|V |n) + (−1)n+1 sin(

√
2|V |n)

)
for some particular γ ∈ R.
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The useful asymptotic

Collecting things together, we believe that we can prove

V1(n) =
e
√

2|V |n
√
πn

(−1)⌊
n
2
⌋γ

(
cos(

√
2|V |n) + (−1)n+1 sin(

√
2|V |n)

)(
1 + O(n− 1

2 )
)

+ O

(
n− 1

2 e

√
n|V |
2

)
=M(n) + E(n).
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Sign patterns

We have the following table of signs for (−1)⌊
n
2 ⌋:

n (mod 4) (−1)⌊
n
2 ⌋

0 +

1 +

2 −
3 −

With the observation that e
√

2|V |n
√
πn

is exponentially positive, our

investigation boils down to the function

cos(
√
2|V |n) + (−1)n+1 sin(

√
2|V |n)

for n, n + 1, n + 2, n + 3.
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1 +

2 −
3 −
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Conjectures 1 and 2

Conjecture
As n → ∞, almost all values of n are such that |V1(n)| → ∞

Conjecture
For almost all n, V1(n),V1(n + 1),V1(n + 2) and V1(n + 3) are two

positive and two negative numbers.

Idea: Prove these together. We need to show that for almost all values of

n, the main term in the asymptotic is bigger than the big-O error term.

This happens as long as the cos± sin term is not exponentially small.

Heuristically, when n gets large the values cos(
√

2|V |(n + j)) (resp.

sin(
√

2|V |(n + j))) for j ∈ {0, 1, 2, 3} are close to each other. To see

this, for a ∈ R consider

lim
x→∞

cos(a
√
x + 1)

cos(a
√
x)

= 1 = lim
x→∞

sin(a
√
x + 1)

sin(a
√
x)

.

34



Conjectures 1 and 2

Conjecture
As n → ∞, almost all values of n are such that |V1(n)| → ∞

Conjecture
For almost all n, V1(n),V1(n + 1),V1(n + 2) and V1(n + 3) are two

positive and two negative numbers.

Idea: Prove these together. We need to show that for almost all values of

n, the main term in the asymptotic is bigger than the big-O error term.

This happens as long as the cos± sin term is not exponentially small.

Heuristically, when n gets large the values cos(
√

2|V |(n + j)) (resp.

sin(
√

2|V |(n + j))) for j ∈ {0, 1, 2, 3} are close to each other. To see

this, for a ∈ R consider

lim
x→∞

cos(a
√
x + 1)

cos(a
√
x)

= 1 = lim
x→∞

sin(a
√
x + 1)

sin(a
√
x)

.

34



Conjectures 1 and 2

Conjecture
As n → ∞, almost all values of n are such that |V1(n)| → ∞

Conjecture
For almost all n, V1(n),V1(n + 1),V1(n + 2) and V1(n + 3) are two

positive and two negative numbers.

Idea: Prove these together. We need to show that for almost all values of

n, the main term in the asymptotic is bigger than the big-O error term.

This happens as long as the cos± sin term is not exponentially small.

Heuristically, when n gets large the values cos(
√

2|V |(n + j)) (resp.

sin(
√

2|V |(n + j))) for j ∈ {0, 1, 2, 3} are close to each other. To see

this, for a ∈ R consider

lim
x→∞

cos(a
√
x + 1)

cos(a
√
x)

= 1 = lim
x→∞

sin(a
√
x + 1)

sin(a
√
x)

.

34



Conjectures 1 and 2

Conjecture
As n → ∞, almost all values of n are such that |V1(n)| → ∞

Conjecture
For almost all n, V1(n),V1(n + 1),V1(n + 2) and V1(n + 3) are two

positive and two negative numbers.

Idea: Prove these together. We need to show that for almost all values of

n, the main term in the asymptotic is bigger than the big-O error term.

This happens as long as the cos± sin term is not exponentially small.

Heuristically, when n gets large the values cos(
√
2|V |(n + j)) (resp.

sin(
√
2|V |(n + j))) for j ∈ {0, 1, 2, 3} are close to each other. To see

this, for a ∈ R consider

lim
x→∞

cos(a
√
x + 1)

cos(a
√
x)

= 1 = lim
x→∞

sin(a
√
x + 1)

sin(a
√
x)

.

34



Equidistribution

Label the roots of cos(x) + (−1)n+1 sin(x) by ϑj modulo 2π for

j = 1, 2, 3, 4. They occur at π
(
ℓ± 1

4

)
.

We want to investigate the cos± sin term when we the argument is close

to these roots (some details to be nailed down here). Rescale the interval

[0, 2π] to the interval [0, 1], and correspondingly consider the

renormalised versions of ϑ′
j := ϑj/2π and x ′n := 1

2π

√
2|V |n.

Weyl’s criterion states that a sequence sn is equidistributed modulo 1 if

and only if for all h ∈ Z with h ̸= 0 we have

lim
N→∞

1

N

N∑
j=1

e2πihsj = 0.
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Equidistribution

It is easy to show that g(n) =
√
n is equidistributed modulo 1 using

Weyl’s criterion. We want to do a bit better, and get a quantitative

version of this.

Idea: Use classical bounds on the discrepancy (a measure of how far from

equidistribution the sequence g(n) is). This will tell us that almost

always, the argument of cos± sin stays away from the roots. In turn,

almost always the cos± sin term is not small enough to kill the

exponential term, and so the main term in the asmyptotic for V1(n) wins!

To prove conjecture 2, it should be clear from the above that almost

always n, n + 1, n + 2, n + 3 have two plus signs and two minus signs,

since the trig term is not small, the exponential dominates with a sign

dictated by (−1)⌊
n
2 ⌋.
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Andrews’ third conjecture

Conjecture
For n ≥ 5 there is an infinite sequence

N5 = 293,N6 = 410,N7 = 545,N8 = 702, . . . ,Nn ≥ 10n2, . . . such that

V1(Nn),V1(Nn + 1),V1(Nn + 2) all have the same sign.

Seems ”clear” that these must be points where cos± sin is very close to

0, and so when
√
2|V |n is close to π

(
ℓ± 1

4

)
.

Solving directly, we want to choose infinitely many n ∈ N to be arbitrarily

close to

π2
(
m ± 1

4

)2
2|V |

, m ∈ Z.
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A problem!

Three cases to consider: π2

|V | is irrational,
π2

|V | is rational with odd

denominator, π2

|V | is rational with even denominator.
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Conditional (partial) result

Assume that π2

|V | is irrational. We want to determine whether there are

infinitely many choices of positive integers m, n such that

2n(
m ± 1

4

)2 =
32n

(4m ± 1)2

is arbitrarily close to π2

|V | .

Let ∥ · ∥ denote the distance to the nearest integer.

Theorem (Baker–Harman)
Let α be irrational and k ≥ 1. Then there are infinitely many primes p

such that

∥αpk∥ < p−ρ(k)+ε

for every ε > 0, where ρ(2) = 3
20 and ρ(k) = (3 · 2k−1)−1 for k ≥ 3.
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Another problem

Simply apply this theorem, and we win for the main term - that is, the

main term is arbitrarily small. However, we have a pesky error term from

the Circle Method of O

(
n−

1
2 e

√
n|V |
2

)
.

We may be able to do better, since we were a bit wasteful in the Circle

Method. If we collect all 4n-th root of unity contributions together, we

should get lots of trig functions that we want to force to be small all at

the same time.

This leads to a question of infinite simultaneous Diophantine

approximation, which I have not been able to find in the literature (yet).
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Conditional (partial) result

Assume that π2

|V | = h/k is rational with odd denominator.

We see that

one would need to choose infinitely many positive integers n that are

arbitrarily close to the points

h

k
(4ℓ± 1)2 .

This is clearly true infinitely often, in particular when (4ℓ± 1)2 = αk

with α ∈ Z.

However, if k is even, then the right-hand side has fixed denominator k,

and thus there cannot be infinitely many integers arbitrarily close to such

points.

Based on numerical evidence, the sequence Nj of places where V1(n)

contain three consecutive terms with the same sign appears to be infinite.

In turn, this provides strong evidence that one may at least discount this

final case.
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Andrews’ fourth conjecture

Conjecture
The numbers |V1(Nn)|, |V1(Nn + 1)|, |V1(Nn + 2)| contain a local

minimum of the sequence |V1(j)|.

Seems just as difficult as the third conjecture, as we still need to know

about the sequence Nn. Perhaps this becomes apparent if one is able to

prove the third conjecture (just like parts 1 and 2 paired up).
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Wrap-up

The Nahm-type sum v1(q) has very different properties for the

coefficients to those of known functions that we could find.

It is a

relative of σ(q) but instead of being assosciated to a real quadratic field,

it seems as though it is intimately connected with the imaginary

quadratic field Q(
√
−3).

Two of Andrews’ conjectures appear to be extraordinarily deep, relying

on irrationality properties of ζQ(
√
−3)(2) (at least, using this method). Is

there a different way to approach these conjectures?

Many follow-up questions could be asked. Probably the easiest will be

regarding the functions v2, v3, v4 from the same paper of Andrews.
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Thank you!
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