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Preliminaries

Let s = σ + it with σ, t ∈ R. The Riemann zeta function is defined by

ζ(s) =
∞∑
n=1

1

ns
=

∏
p

Å
1− 1

ps

ã−1

, (σ > 1)

and Riemann proved that ζ(s) satisfies the functional equation

ζ(s) = πs− 1
2
Γ
(
1−s
2

)
Γ
(
s
2

) ζ(1− s)

which gives the meromorphic continuation of ζ(s) to C with the simple pole at s = 1.

By the Euler product above, we see that ζ(s) ̸= 0 in the region σ > 1 and by the
functional equation, ζ(−2n) = 0 for all natural numbers n ⩾ 1.

The set of negative even integers is called the set of the trivial zeros of Riemann zeta
function. Thus, in terms of the zeros of ζ(s), the unknown portion of the complex plane
is the strip 0 ⩽ σ ⩽ 1 which is called the critical strip.

A zero of ζ(s) in the critical strip is called a nontrivial zero and it is denoted by
ρ = β + iγ where 0 ⩽ β ⩽ 1 and γ ∈ R.
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Preliminaries

Let N(T ) be the number of zeros ρ = β + iγ of ζ(s) with 0 ⩽ β ⩽ 1 and 0 ⩽ γ ⩽ T ,
counted with multiplicity.

By a result of von Mangoldt, stated by Riemann, we have

N(T ) =
T

2π
log

Å
T

2πe

ã
+ O (logT )

as T → ∞.

But why are we interested in the zeros of ζ(s)? This is simply because we would like to
divide by ζ(s) in order to have a better understanding on the distribution of prime
numbers. To make division by ζ(s) meaningful, we need to know that ζ(s) ̸= 0.
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Preliminaries

More precisely, for σ = ℜ(s) > 1, we have

ζ(s) =
∏
p

Å
1− 1

ps

ã−1

which gives

− log ζ(s) =
∑
p

log

Å
1− 1

ps

ã

and by differentiation with respect to s, we have

−ζ
′

ζ
(s) =

∑
p

p−s log p

1− 1
ps

=
∑
p

p−s log p

Å
1 +

1

ps
+

1

p2s
+ . . .

ã
=

∑
j⩾1

∑
p

log p

pjs
.

For a natural number n, let Λ(n) be the von Mangoldt function defined by Λ(n) = log p if
n is a prime power pj for some j ⩾ 1, and Λ(n) = 0 otherwise. Then

−ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)

ns
, (σ > 1).
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Preliminaries

Thus the function − ζ′

ζ
(s) is closely related to prime powers. For x ⩾ 2, by the Residue

Theorem, we have

1

2πi

1+ϵ+i∞∫
1+ϵ−i∞

∞∑
n=1

Λ(n)

ns

x s

s
ds =

∞∑
n=1

Λ(n)
1

2πi

1+ϵ+i∞∫
1+ϵ−i∞

(
x
n

)s
s

ds =
∑
n⩽x

Λ(n) + O(log x)

and

1

2πi

1+ϵ+i∞∫
1+ϵ−i∞

Å
−ζ

′

ζ
(s)

ã
x s

s
ds = x −

∑
ρ

xρ

ρ
+ O (1)

and thus ∑
n⩽x

Λ(n) = x −
∑
ρ

xρ

ρ
+ O(log x).
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Preliminaries

The Prime Number Theorem, conjectured by Gauss in 1792 and proved by Hadamard
and de la Vallée Poussin in 1896 independently, is the statement that

π(x) = |{p ⩽ x : p prime}| ∼ x

log x
, (x → ∞)

or equivalently that∑
n⩽x

Λ(x) = x −
∑
ρ

xρ

ρ
+ O(log x) = x + o(x), (x → ∞).

Thus the real parts of the nontrivial zeros ρ of ζ(s) play an important role to control the
error term in the Prime Number Theorem.

The best known zero-free region for the Riemann zeta function is due to Korobov and
Vinogradov independently in 1958 that ζ(s) ̸= 0 in the region

σ > 1− C

(log |t|)2/3 (log log |t|)1/3

for some positive constant C and |t| ⩾ 3 whereas the Riemann Hypothesis is the
conjecture that ζ(s) ̸= 0 if σ > 1

2
.
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Part II: Main Results
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Discrete Moments of the Riemann Zeta Function

The discrete 2k th moment of the mth derivative of the Riemann zeta function is the sum∑
ρ

0<γ⩽T

∣∣∣ζ(m)(ρ)
∣∣∣2k , (k ∈ R, m ∈ N).

One of the reasons to study this object is to have a better understanding on the average
size of the derivatives of ζ(s) at its zeros. Moreover, such moments can produce results
on the large or small gaps between the ordinates of the zeros of ζ(s), and multiplicities of
the zeros, and the summatory function of the Möbius function.

Assuming the Riemann Hypothesis, Gonek proved that∑
ρ

0<γ⩽T

∣∣ζ′(ρ)∣∣2 ∼ T

24π
log4 T

and no other asymptotic formula is known even conditionally.
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Discrete Moments of the Riemann Zeta Function

Gonek and Hejhal independently conjectured that

T (logT )k(k+2)+1 ≪
∑

0<γ⩽T

∣∣ζ′(ρ)∣∣2k ≪ T (logT )k(k+2)+1

for all k ∈ R.

As an upper bound, Kirila proved, under the assumption of the Riemann Hypothesis, that∑
0<γ⩽T

∣∣∣ζ(m)(ρ)
∣∣∣2k ≪ T (logT )k(k+2m)+1

for k > 0 and m ∈ N.

Milinovich and Ng proved under the assumption of the Generalized Riemann Hypothesis
that ∑

0<γ⩽T

∣∣ζ′(ρ)∣∣2k ≫ T (logT )k(k+2)+1 (1)

for k ∈ N. Very recently, Heap, Li and Zhao obtained the same lower bound in (1) for
rational k ⩽ 0 assuming the Riemann Hypothesis and the simplicity of the zeros.
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Main Results

Theorem (Kübra Benli, E. , Nathan Ng)

Assume the Riemann Hypothesis. Let k,m ⩾ 1 be natural numbers. We have∑
0<γ⩽T

∣∣∣ζ(m)(ρ)
∣∣∣2k ≫ T (logT )k(k+2m)+1 .

The result above is obtained by a general result on the sum

S(α,T ,X ,Y ) :=
∑

0<γ⩽T

ζ(ρ+ α)X (ρ)Y (1− ρ)

where X (s) and Y (s) are some Dirichlet polynomials and the shift α ∈ C satisfies
|α| ≪ 1

log T
.
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Theorem (Kübra Benli, E. , Nathan Ng)

Assume the Riemann Hypothesis. Let k,m ⩾ 1 be natural numbers. We have∑
0<γ⩽T

∣∣∣ζ(m)(ρ)
∣∣∣2k ≫ T (logT )k(k+2m)+1 .

The result above is obtained by a general result on the sum

S(α,T ,X ,Y ) :=
∑

0<γ⩽T

ζ(ρ+ α)X (ρ)Y (1− ρ)

where X (s) and Y (s) are some Dirichlet polynomials and the shift α ∈ C satisfies
|α| ≪ 1

log T
.

11 / 34



Definitions and Assumptions

Let

X (s) =
∑
n⩽N

x(n)

ns
,

Y (s) =
∑
n⩽N

y(n)

ns

where x(n) and y(n) are sequences such that x(n) = y(n) = 0 for n > N.

Assume that N ≪ Tϑ for some 0 < ϑ < 1
2
. Assume further that the submultiplicativity

condition

x(mn) ≪ |x(m)x(n)|
y(mn) ≪ |y(m)y(n)|

holds for all natural numbers m and n.
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Definitions and Assumptions

Our main result has two parts by using the following assumptions.

Divisor Bound Assumption: Assume that there exist k1, k2, ℓ1, ℓ2 ≥ 1 such that

x(n) ≪ τk1(n)(log n)
ℓ1 ,

y(n) ≪ τk2(n)(log n)
ℓ2

where τk(·) is the k-fold divisor function given by the coefficients of ζ(s)k .

GRH(Θ) Conjecture: There exists Θ ∈ [ 1
2
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Definitions and Assumptions

Let α ∈ C such that |α| ⩽ 1
15 log T

and define

sα(n) := nα.

For a natural number k, define

Φ(s, k) :=
∏
p|k

Ä
1− p−s

ä
, (s ∈ C).
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Main Result

For k, h ∈ N, define

Fα,h,k(T ) :=
T

2π

(
1k=1

hα
ζ′

ζ
(1 + α)− Λ(k)

hαΦ(1 + α, k)
− k

φ(k)
Φ(α, k)ζ(1− α)

(
T

2πk

)−α
1− α

)
.

Theorem (Kübra Benli, E. , Nathan Ng)

With the definitions and the assumptions above, we have

S(α,T ,X ,Y ) =
∑

0<γ≤T

ζ(ρ+ α)X (ρ)Y (1− ρ)

=
T

2π
log

Å
T

2πe

ã∑
n⩽N

(s−α ∗ x) (n)y(n)
n

− T

2π

∑
n⩽N

(Λ ∗ s−α ∗ x) (n)y(n)
n

+
∑
g⩽N

∑
h,k⩽N/g
(h,k)=1

y(gh)x(gk)

gkh
Fα,h,k(T ) + Ẽ

where the error term Ẽ satisfies the following bounds.
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where the error term Ẽ satisfies the following bounds.

15 / 34



Main Result

Theorem (Kübra Benli, E. , Nathan Ng)

1. Under the Divisor Bound Assumption, we have

Ẽ ≪ T (logT )−A

for any A > 0.

2. Under the GRH(Θ) Conjecture, we have

Ẽ ≪ TΘ+ε

Å∥∥∥∥y(n)nΘ

∥∥∥∥
1

∥∥∥n1/2x(n)(1 ∗ |y |)(n)
∥∥∥
1

ã
+ TΘ+ε

Å∥∥∥∥x(n)y(n)n

∥∥∥∥
1

∥∥∥∥y(n)nΘ

∥∥∥∥
1

∥∥∥∥x(n)n

∥∥∥∥
1

∥∥∥∥ x(n)

n2−Θ

∥∥∥∥
1

ã
+ T

1
2
+ε

Å
∥x∥1

∥∥∥∥y(n)n

∥∥∥∥
1

+ ∥y∥1

∥∥∥∥x(n)n

∥∥∥∥
1

ã
for any ϵ > 0.
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Main Result with Higher Derivatives

For m ⩾ 1, define

Sm(T ,X ,Y ) :=
d

dαm
(S(α,T ,X ,Y ))

∣∣∣∣∣
α=0

=
∑

0<γ⩽T

ζ(m)(ρ)X (ρ)Y (1−ρ).

Since the error term in our main result for S(α,T ,X ,Y ) is independent of α, we can
apply the Cauchy Integral Formula to S(α,T ,X ,Y ) to estimate the mth derivative
Sm(T ,X ,Y ).
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Main Result with Higher Derivatives

Theorem (Kübra Benli, E. , Nathan Ng)

For m ⩾ 1, we have

Sm(T ,X ,Y ) =
(−1)m+1

m + 1

T

2π

∑
g⩽N

∑
h⩽N/g

y(gh)x(g)

gh

Å
Pm+1

Å
log

Å
T

2π

ãã
−Qm+1(log h)

ã
+

T

2π

∑
g⩽N

∑
h,k⩽N/g

k⩾2
(h,k)=1

y(gh)x(gk)

gkh

Ä
(−1)m+1Am(h, k) + Bm(k,T )

ä
+ (−1)m

T

2π
log

Å
T

2πe

ã∑
n⩽N

(logm ∗x) (n)y(n)
n

+ (−1)m+1 T

2π

∑
n⩽N

(Λ ∗ logm ∗x) (n)y(n)
n

+ Ẽ

where Pm+1 and Qm+1 are monic polynomials of degree m + 1 and Am(h, k) and
Bm(k,T ) are some arithmetic weights.
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Part III: Ideas in the Proofs
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Sketch Proof

Our aim is to estimate the sum

S(α,T ,X ,Y ) =
∑

0<γ≤T

ζ(ρ+ α)X (ρ)Y (1− ρ)

where T is large and |α| ⩽ 1
15 log T

.

Let κ := 1 + 1
log T

and C be the positively oriented rectangle with vertices at
κ+ i , κ+ iT , 1− κ+ iT and 1− κ+ i .

By the Residue Theorem, we have

S(α,T ,X ,Y ) = − 1

2πi

∫
C

ζ′

ζ
(1−s)ζ(s + α)X (s)Y (1−s) ds.

Let SR and SL denote the integrals over the right vertical line and the left vertical line of
the contour C , respectively. Then, by controlling the contributions of the horizontal parts
via the convexity bounds, we have

S(α,T ,X ,Y ) = SR + SL ++O (e1)

where

e1 ≪ T
1
2
+ε

Å
∥x∥1

∥∥∥∥y(n)n

∥∥∥∥
1

+ ∥y∥1

∥∥∥∥x(n)n

∥∥∥∥
1

ã
.
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Sketch Proof

For the contribution of the right edge

SR = − 1

2πi

∫ κ+iT

κ+i

ζ′

ζ
(1−s)ζ(s + α)X (s)Y (1−s) ds,

we use

ζ′

ζ
(1−s) =

χ′

χ
(s)− ζ′

ζ
(s) = − log

Å
|t|
2π

ã
− ζ′

ζ
(s) + O

Ä
|t|−1

ä
where χ(·) is the functional equation factor for the Riemann zeta function.

Then by using the underlying Dirichlet series of the integrand in SR , we have

SR =
T

2π
log

Å
T

2πe

ã∑
n⩽N

(s−α ∗ x) (n)y(n)
n

− T

2π

∑
n⩽N

(Λ ∗ s−α ∗ x) (n)y(n)
n

+ O (e1) .
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Sketch Proof

For the contribution of the left edge, SL, we use the functional equation
ζ(s + α) = χ(s + α)ζ(1− s − α) to rewrite SL as

SL = − 1

2πi

∫ 1−κ+i

1−κ+iT

ζ′

ζ
(1−s)χ(s + α)ζ(1−s − α)X (s)Y (1−s) ds

=
1

2π

∫ T

1

ζ′

ζ
(κ+ it)χ(1− κ− it + α)ζ(κ+ it − α)X (1− κ− it)Y (κ+ it) dt

where we use the notation X (s) =
∑
n⩽N

x(n)/ns and Y (s) =
∑
n⩽N

y(n)/ns . Define

SL(γ) :=
1

2π

∫ T

1

ζ(κ+ γ + it)

ζ(κ+ it)
χ(1− κ− it + α)ζ(κ+ it − α)X (1− κ− it)Y (κ+ it) dt

for γ ∈ C with |γ| ⩽ 1
15 log T

.Then we have

SL =
d

dγ
SL(γ)

∣∣∣
γ=0

.
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Sketch Proof

Now our aim is to estimate the integral

SL(γ) =
1

2π

∫ T

1

ζ(κ+ γ + it)

ζ(κ+ it)
χ(1− κ− it + α)ζ(κ+ it − α)X (1− κ− it)Y (κ+ it) dt.

For ℜ(w) = κ−ℜ(α) > 1, define

A(w) :=
ζ(w + α+ γ)

ζ(w + α)
ζ(w)Y (w + α) =

∞∑
m=1

∑
m1m2m3m4=m

m4⩽N
µ(m1)m

−α
1 m−α−γ

2 y(m4)m
−α
4

mw

=
∞∑
m=1

a(m)

mw

and

B(1− w) := X (1− w − α) =
∑
k⩽N

x(k)kα

k1−w
=

∑
k⩽N

b(k)

k1−w
.

Then we have

SL(γ) =
1

2πi

∫ κ+iT−α

κ+i−α
χ(1− w)B(1− w)A(w) dw .
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SL(γ) =
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2π

∫ T

1

ζ(κ+ γ + it)
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ζ(w + α+ γ)
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m=1

∑
m1m2m3m4=m
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Sketch Proof

By using the stationary phase method, we have

SL(γ) =
∑
k⩽N

b(k)

k

∑
m⩽kT/2π

a(m)e (−m/k) + O (e1)

where e (−m/k) = e−2πim/k .

For the inner sum above, we use the identity

e
(
−m

k

)
=
µ(k/(k,m))

ϕ(k/(k,m))
+

∑
q|k
q>1

∑
ψ (mod q)

τ(ψ)
∑
d|m
d|k

ψ
(m
d

)
δ(q, k, d , ψ)

where

δ(q, k, d , ψ) =
∑
e|d

e|k/q

µ(d/e)

ϕ(k/e)
ψ
(
− k

eq

)
ψ

Å
d

e

ã
µ

Å
k

eq

ã
.
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Sketch Proof

Let

M(γ) :=
∑
k⩽N

b(k)

k

∑
m⩽kT/2π

a(m)
µ(k/(m, k))

ϕ(k/(m, k))

and

E(γ) :=
∑
k⩽N

b(k)

k

∑
m⩽kT/2π

a(m)
∑
q|k
q>1

∑
ψ (mod q)

τ(ψ)
∑
d|m
d|k

ψ
(m
d

)
δ(q, k, d , ψ).

Thus we have

SL(γ) = M(γ) + E(γ) + O(e1)

and by differentiating with respect to γ via the Cauchy Integral Formula, we have

SL = M+ E + O (e1) .

Now we state our results for the terms M and E .
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The term M

Proposition

We have

M =
∑
g⩽N

∑
h,k⩽N/g
(h,k)=1

y(gh)x(gk)

ghk
Fα,h,k(T ) + O (e2)

where

Fα,h,k(T ) =
T

2π

(
1k=1

hα
ζ′

ζ
(1 + α)− Λ(k)

hαΦ(1 + α, k)
− k

φ(k)
Φ(α, k)ζ(1− α)

(
T

2πk

)−α
1− α

)
and

e2 :=

{
T exp

(
−c

√
logT

)
on the Divisor Bound Assumption,

TΘ+ε
∥∥∥ x(n)y(n)

n

∥∥∥
1

∥∥∥ y(n)

nΘ

∥∥∥
1

∥∥∥ x(n)
n

∥∥∥
1

∥∥∥ x(n)

n2−Θ

∥∥∥
1

on the GRH(Θ) Conjecture

for some positive constant c.

The proof of this result uses a decomposition lemma by Conrey, Ghosh and Gonek to find
the generating series for the coefficients appearing in M(γ) and then we estimate the
corresponding summatory function by Perron’s formula.
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The term E

Proposition

We have

E ≪

{
T (logT )−A on the Divisor Bound Assumption,

TΘ+ε
∥∥∥ y(n)

nΘ

∥∥∥
1

∥∥∥n1/2x(n)(1 ∗ |y |)(n)
∥∥∥
1

on the GRH(Θ) Conjecture.

The proof of this result uses again the underlying generating series and Perron’s formula
in the conjectural case. But in the case where we assume the Divisor Bound Assumption
only, we use Heath-Brown’s combinatorial decomposition of µ(n) and the Large Sieve
Inequality as utilized in the work of Heap, Li and Zhao.

By combining the estimates above, we obtain our main result on the discrete mean value

S(α,T ,X ,Y ) =
∑

0<γ≤T

ζ(ρ+ α)X (ρ)Y (1− ρ).
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Recall: The Main Result

For k, h ∈ N, recall that

Fα,h,k(T ) =
T

2π

(
1k=1

hα
ζ′

ζ
(1 + α)− Λ(k)

hαΦ(1 + α, k)
− k

φ(k)
Φ(α, k)ζ(1− α)

(
T

2πk

)−α
1− α

)
.

Theorem (Kübra Benli, E. , Nathan Ng)

With the definitions and the assumptions above, we have

S(α,T ,X ,Y ) =
∑

0<γ≤T

ζ(ρ+ α)X (ρ)Y (1− ρ)

=
T

2π
log

Å
T

2πe

ã∑
n⩽N

(s−α ∗ x) (n)y(n)
n

− T

2π

∑
n⩽N

(Λ ∗ s−α ∗ x) (n)y(n)
n

+
∑
g⩽N

∑
h,k⩽N/g
(h,k)=1

y(gh)x(gk)

gkh
Fα,h,k(T ) + Ẽ .
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Theorem (Kübra Benli, E. , Nathan Ng)

With the definitions and the assumptions above, we have

S(α,T ,X ,Y ) =
∑

0<γ≤T

ζ(ρ+ α)X (ρ)Y (1− ρ)

=
T

2π
log

Å
T

2πe

ã∑
n⩽N

(s−α ∗ x) (n)y(n)
n

− T

2π

∑
n⩽N

(Λ ∗ s−α ∗ x) (n)y(n)
n

+
∑
g⩽N

∑
h,k⩽N/g
(h,k)=1

y(gh)x(gk)

gkh
Fα,h,k(T ) + Ẽ .
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Recall: Main Result with Higher Derivatives

By using the Cauchy Integral Formula and the previous result, we obtain the following
estimate for higher derivatives.

Theorem (Kübra Benli, E. , Nathan Ng)

For m ⩾ 1, we have

Sm(T ,X ,Y ) =
(−1)m+1

m + 1

T

2π

∑
g⩽N

∑
h⩽N/g

y(gh)x(g)

gh

Å
Pm+1

Å
log

Å
T

2π

ãã
−Qm+1(log h)

ã
+

T

2π

∑
g⩽N

∑
h,k⩽N/g

k⩾2
(h,k)=1

y(gh)x(gk)

gkh

Ä
(−1)m+1Am(h, k) + Bm(k,T )

ä
+ (−1)m

T

2π
log

Å
T

2πe

ã∑
n⩽N

(logm ∗x) (n)y(n)
n

+ (−1)m+1 T

2π

∑
n⩽N

(Λ ∗ logm ∗x) (n)y(n)
n

+ Ẽ

where Pm+1 and Qm+1 are monic polynomials of degree m + 1 and Am(h, k) and
Bm(k,T ) are some arithmetic weights.
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Sketch Proof of the Corollary

Now our aim to obtain the lower bound∑
0<γ⩽T

|ζ(m)(ρ)|2k ≫ T (logT )k
2+2km+1.

for k,m ∈ N under the assumption of the Riemann Hypothesis.

For 0 < ϑ < 1
2
and

sufficiently large T , let N = ξk = Tϑ. Define

Cξ(s) :=
∑
n⩽ξ

1

ns
.

Observe that

Σ1 :=
∑

0<γ⩽T

ζ(m)(ρ)Cξ(ρ)k−1Cξ(ρ)
k
=

∑
0<γ⩽T

ζ(m)(ρ)Cξ(ρ)k−1Cξ(1− ρ)k

by the assumption of the Riemann Hypothesis. By Hölder’s inequality, we have

|Σ1| ⩽

Ñ ∑
0<γ⩽T

∣∣∣ζ(m)(ρ)
∣∣∣2k
é 1

2k
Ñ ∑

0<γ⩽T

Ä
|Cξ(ρ)|2k−1

ä 2k
2k−1

é 2k−1
2k

.
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Sketch Proof of the Corollary

Thus, by taking the 2k th power of both sides, we have

|Σ1|2k ⩽

Ñ ∑
0<γ<T

∣∣∣ζ(m)(ρ)
∣∣∣2k
é

Σ2k−1
2

where

Σ2 :=
∑

0<γ⩽T

|Cξ(ρ)|2k .

This gives the lower bound ∑
0<γ⩽T

∣∣∣ζ(m)(ρ)
∣∣∣2k ⩾

|Σ1|2k

Σ2k−1
2

.
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Sketch Proof of the Corollary

By using our main result concerning higher derivatives, we have

Σ1 ≫ T (logT )k
2+m+1 .

By a result of Milinovich and Ng, we have

Σ2 ≪ T (logT )k
2+1 .

Hence ∑
0<γ⩽T

∣∣∣ζ(m)(ρ)
∣∣∣2k ⩾

|Σ1|2k

Σ2k−1
2

≫ T 2k (logT )2k(k
2+m+1)

T 2k−1 (logT )(2k−1)(k2+1)
= T (logT )k

2+2km+1.
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THANK YOU!
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