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Problem: Transport an initial probability distribution µ0 on Rd to
a target probability distribution π on Rd .

Assume that π ∈ P2(Rd ) =
{
µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞

}
.

This problem can be written as an optimization problem on
P2(Rd ), e.g.

min
µ∈P2(Rd )

D(µ|π)

where D is a dissimilarity functional, seen as a loss, between
probability distributions.

Wasserstein Gradient Flows find continuous paths on P2(Rd )
(equipped with the Wasserstein-2 geometry) that decrease this
loss.

Different algorithms result from (1) the choice of D and (2)
different time-space discretizations.
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Many problems in ML can be formulated as the
minimization of a functional on probability distributions :

min
µ∈P2(Rd )

G(µ), where G(µ) = D(µ|π)

I sampling (ex: π posterior distribution in Bayesian
inference)

I optimizing Neural Networks (ex: π distribution over
parameters of a big Neural Network)

I many others : generative modelling, reinforcement
learning... [Chu et al., 2019]

One can design new schemes and/or study existing ones
as discretizations of Wasserstein gradient flows.

4/ 54



Outline

Introduction

Wasserstein gradient flows

Functionals of interest in Machine Learning

Recent results (relative entropy/KL gradient flow)

Recent results (MMD and KSD gradient flows)

5/ 54



Setting - The Wasserstein space

Let P2(Rd ) denote the space of probability measures on Rd

with finite second moments, i.e.

P2(Rd ) = {µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞}

P2(Rd ) is endowed with the Wasserstein-2 distance from
Optimal transport :

W 2
2 (ν, µ) = inf

s∈Γ(ν,µ)

∫
Rd×Rd

‖x − y‖2 ds(x , y) ∀ν, µ ∈ P2(Rd )

where Γ(ν, µ) is the set of possible couplings between ν and µ.
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Def (pushforward) : Let µ ∈ P2(Rd ), T : Rd → Rd . The
pushforward measure T#µ is characterized by:
I ∀ B meas. set, T#µ(B) = µ(T−1(B))

I x ∼ µ, T (x) ∼ T#µ

Brenier’s theorem : Let µ, ν ∈ P2(Rd ) s.t. µ� Leb. Then,
I Then ∃! T ν

µ : Rd → Rd s.t. T ν
µ#µ = ν, and a convex

function g s.t. T ν
µ = ∇g µ-a.e.

I W 2
2 (µ, ν) = ‖I − T ν

µ‖2L2(µ) = infT∈L2(µ)

∫
(x − T (x))2dµ(x)

where L2(µ) = {f : Rd → Rd ,
∫
‖f (x)‖2dµ(x) <∞}

W2 geodesics?
ρ(0) = µ, ρ(1) = ν.

ρ(t) = ((1− t)I + tT ν
µ )#µ

6= ρ(t) = (1− t)µ+ tν︸ ︷︷ ︸
mixture
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Continuity equations

Let T > 0. Consider a family µ : [0,T ]→ P2(Rd ), t 7→ µt . It
satisfies a continuity equation if there exists (Vt )t∈[0,T ] such that
Vt ∈ L2(µt ) and distributionnally:

∂µt

∂t
+∇ · (µtVt ) = 0.

Rules density µt of particles xt ∈ Rd driven by a vector field Vt :

dxt

dt
= Vt (xt )
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Wasserstein Gradient Flows (WGF) [Ambrosio et al., 2008]

Let G : P2(Rd )→ R ∪ {+∞}, µ 7→ G(µ) a regular functional.
The first variation of G evaluated at µ ∈ P2(Rd ) is the unique
function ∂G(µ)

∂µ : Rd → R s. t. for any µ, µ′ ∈ P2(Rd ), s.t.
µ′ − µ ∈ P2(Rd ):

lim
ε→0

1
ε

[
G(µ+ ε(µ′ − µ))− G(µ)

]
=

∫
Rd

∂G(µ)

∂µ
(x) (dµ′ − dµ)(x).

Then µ : [0,T ]→ P2(Rd ), t 7→ µt satisfies a Wasserstein
gradient flow of G if distributionally:

∂µt

∂t
−∇ ·

(
µt∇

∂G(µt )

∂µt

)
= 0, i.e. Vt = −∇W2G(µt )

where ∇W2G(µ) := ∇∂G(µ)
∂µ ∈ L2(µ) is called the Wasserstein

gradient of G.
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WGF of Free energies
In particular, if the functional G is a free energy:

G(µ) =

∫
H(µ(x))dx︸ ︷︷ ︸

internal energy H(µ)

+

∫
V (x)dµ(x)︸ ︷︷ ︸

potential energy EV (µ)

+

∫
W (x , y)dµ(x)dµ(y)︸ ︷︷ ︸
interaction energyW(µ)

Then :
∂µt

∂t
=∇ ·

µt ∇(H ′(µt ) + V + W ∗ µt )︸ ︷︷ ︸
∇W2G(µ)

. (1)

For instance, if H = 0 then (1) rules the density µt of particles
xt ∈ Rd driven by :

dxt

dt
= −∇V (xt )−

∫
Rd
∇W (x , xt )dµt (x)

µt = Law(xt ).
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Time discretizations

For a step-size γ > 0:
1. Forward :

µl+1 = expµl (−γ∇W2G(µl)) =
(
I − γ∇W2G(µl)

)
#
µl

where expµ : L2(µ)→ P, φ 7→ (I + φ)#µ,
and which corresponds in Rd to:

Xl+1 = Xl − γ∇W2G(µl)(Xl) ∼ µl+1, if Xl ∼ µl .

2. Backward :
µl+1 = JKOγG(µl)

where JKOγG(µl) = argmin
µ∈P2(Rd )

{
G(µ) +

1
2γ

W 2
2 (µ, µl)

}
.

3. Splitting schemes : if G = G1 + G2, e.g. Forward/Backward:

νl+1 = (I − γ∇W2G1(µl))#µl

µl+1 = JKOγG2(νl+1)
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Space discretization - Interacting particle system

If the vector field depends on the density of the particles at time
l , replace µl by the empirical measure of a system of n
interacting particles:

X 1
0 , . . . ,X

n
0 ∼ µ0

and for j = 1, . . . ,n:

X j
l+1 = X j

l − γ∇W2G(µ̂l)(X j
l )

= X j
l −

1
γ

[
∇V (X j

l ) +
1
n

n∑
i=1

∇W (X j
l ,X

i
l )

]

where µ̂l = 1
n
∑n

i=1 δX j
l
.
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The relative entropy/Kullback-Leibler divergence

For any µ, π ∈ P2(Rd ), the Kullback-Leibler divergence of µ
w.r.t. π is defined by

KL(µ|π) =

∫
Rd

log
(µ
π

(x)
)

dµ(x) if µ� π

and is +∞ otherwise.

We consider the functional KL(·|π) : P2(Rd )→ [0,+∞].

The differential of KL(·|π) evaluated at µ, ∂ KL(µ|π)
∂µ : Rd → R is

the function
log
(µ
π

)
(.) + 1 : Rd → R.

Hence, for µ regular enough, ∇W2 KL(µ|π) is:

∇ log
(µ
π

)
(.) : Rd → R.
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Example 1 : Bayesian statistics
I Let D = (xi , yi )i=1,...,m a labelled dataset.

I Assume an underlying model parametrized by z ∈ Rd , e.g.
y ∼ f (x , z) + ε (p(y |x , z) gaussian)

=⇒ Compute the likelihood: p(D|z) =
∏m

i=1 p(yi |xi , z).

I Assume a prior distribution on the parameter z ∼ p.

Bayes’ rule : π(z) := p(z|D) =
p(D|z)p(z)

C
, C =

∫
Rd

p(D|z)p(z)dz.

π is known up to a constant since C is untractable.
How to sample from π then? e.g. to compute:

p(y |x ,D) =

∫
Rd

p(y |x , z)dπ(z)

1. MCMC methods (Markov Chain Monte Carlo)

2. Sampling as optimization of the KL [Wibisono, 2018]

π = argmin
µ∈P2(Rd )

KL(µ|π)
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Background on kernels and RKHS [Steinwart and Christmann, 2008]

I Let k : Rd × Rd → R a positive, semi-definite kernel, e.g.

I the Gaussian kernel k(z, z ′) = exp
(
−‖z−z′‖2

h

)
I the Laplace kernel k(z, z ′) = exp

(
−‖z−z′‖

h

)
I the inverse multiquadratic kernel

k(z, z ′) = (c + ‖z − z ′‖)−β with β ∈]0,1[

I Hk its corresponding RKHS (Reproducing Kernel Hilbert Space):

Hk =

{
m∑

i=1

αik(·, zi ); m ∈ N; α1, . . . , αm ∈ R; z1, . . . , zm ∈ Rd

}

I Hk is a Hilbert space with inner product 〈., .〉Hk and norm ‖.‖Hk .

I It satisfies the reproducing property:

∀ f ∈ Hk , z ∈ Rd , f (z) = 〈f , k(z, .)〉Hk .
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Maximum Mean Discrepancy [Gretton et al., 2012]

Assume µ 7→
∫

k(z, .)dµ(z) injective.

Maximum Mean Discrepancy defines a distance on P2(Rd ):

MMD2(µ, π) = sup
f∈Hk ,‖f‖Hk≤1

∣∣∣∣∫ fdµ−
∫

fdπ
∣∣∣∣2

= ‖mµ −mπ‖2
Hk

=

∫∫
Rd

k(z, z ′)dµ(z)dµ(z ′) +

∫∫
Rd

k(z, z ′)dπ(z)dπ(z ′)

− 2
∫∫

Rd
k(z, z ′)dµ(z)dπ(z ′),

by the reproducing property 〈f , k(z, .)〉Hk = f (z) for f ∈ Hk .

The differential of µ 7→ 1
2 MMD2(., π) evaluated at µ ∈ P2(Rd ) is:∫

k(z, .)dµ(z)−
∫

k(z, .)dπ(z) : Rd → R.

Hence, for k regular enough, ∇W2
1
2 MMD2(µ, π) is:∫

∇2k(z, .)dµ(z)−
∫
∇2k(z, .)dπ(z) : Rd → R.
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Example 2 : Regression with infinite width NN

[Chizat and Bach, 2018, Rotskoff and Vanden-Eijnden, 2018, Mei et al., 2018]
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The well-specified case [Arbel et al., 2019]

We have (x , y) ∼ data.

Assume ∃π ∈ P , E[y |X = x ] = EZ∼π[φZ (x)].

Then : min
µ∈P2(Rd )

E[‖y − EZ∼µ[φZ (x)]‖2]

m
min

µ∈P2(Rd )
E[‖EZ∼π[φZ (x)]− EZ∼µ[φZ (x)]‖2]

m
min

µ∈P2(Rd )
EZ∼π

Z ′∼π
[k(Z ,Z ′)] + EZ∼µ

Z ′∼µ
[k(Z ,Z ′)]− 2EZ∼π

Z ′∼µ
[k(Z ,Z ′)]

with k(Z ,Z ′) = Ex∼data[φZ (x)TφZ ′(x)]

m

min
µ∈P2(Rd )

1
2

MMD2(µ, π)
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Illustration : Student-Teacher network
Satisfies the "well-specified" assumption ! (∃π, E[y |X = x ] = EZ∼π[φZ (x)])

I the output of the Teacher network is deterministic and given by

y =
∫
φZ (x)dπ(Z ) where π = 1

M

M∑
m=1

δUm

I Student network parametrized by µ0 = 1
N

N∑
j=1

δZ j
0

tries to learn the

mapping x 7→
∫
φZ (x)dπ(Z ).
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Gradient descent on each parameter j ∈ {1, . . . ,N} :

z j
l+1 = z j

l − γEx∼data

[(
1
N

N∑
i=1

φz i
l
(x)− 1

M

M∑
m=1

φum (x)

)
∇z j

l
φz j

l
(x)

]
,

Re-arranging terms and recalling that
k(z, z ′) = Ex∼data[φz(x)Tφz′(x)], the update becomes:

z j
l+1 = z j

l − γ

(
1
N

N∑
i=1

∇2k(z i
l , z

j
l )−

1
M

M∑
m=1

∇2k(um, z j
l )

)
︸ ︷︷ ︸

∇W2
1
2 MMD2

π,µ̂t
(z j

l )

The above equation is a time-discretized version of the
gradient flow of the MMD.
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KL and MMD are free energies

The relative entropy G(µ) = KL(µ|π) =
∫

log(µ/π)dµ, π ∝ e−V can
be written:

G(µ) =

∫
H(µ(x))dx︸ ︷︷ ︸
H(µ)

+

∫
V (x)µ(x)dx︸ ︷︷ ︸
EV (µ)

−C,

H(s) = s log(s), V (x) = − log(π(x)), C = H(π) + EV (π).

The Maximum Mean Discrepancy G(µ) = 1
2 MMD2(µ, π) also:

G(µ) =

∫
V (x)dµ(x)︸ ︷︷ ︸
EV (µ)

+
1
2

∫
W (x , y)dµ(x)dµ(y)︸ ︷︷ ︸

W(µ)

+C,

V (x) = −
∫

k(x , x ′)dπ(x ′), W (x , x ′) = k(x , x ′), C =W(π).
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Kernel Stein Discrepancy [Chwialkowski et al., 2016, Liu et al., 2016]

If one does not have access to samples of π but only to its
score, it is still possible to compute the KSD. For µ, π ∈ P(Rd ),
the KSD of µ relative to π is defined by

KSD2(µ|π) =

∫∫
kπ(x , y)dµ(x)dµ(y),

where kπ : Rd × Rd → R is the Stein kernel, defined through
I the score function s(x) = ∇ log π(x),
I a p.s.d. kernel k : Rd × Rd → R, k ∈ C2(Rd )1

For x , y ∈ Rd ,

kπ(x , y) = s(x)T s(y)k(x , y) + s(x)T∇2k(x , y)

+∇1k(x , y)T s(y) +∇ ·1 ∇2k(x , y)

=
d∑

i=1

∂ log π(x)

∂xi
.
∂ log π(y)

∂yi
.k(x , y) +

∂ log π(x)

∂xi
.
∂k(x , y)

∂yi

+
∂ log π(y)

∂yi
.
∂k(x , y)

∂xi
+
∂2k(x , y)

∂xi∂yi
∈ R.

1e.g. : k(x , y) = exp
(
−‖x − y‖2/h
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KSD vs MMD

Under mild assumptions on k and π, the Stein kernel kπ is p.s.d. and
satisfies a Stein identity

∫
Rd

kπ(x , .)dπ(x) = 0.

Consequently, KSD is an MMD with kernel kπ, since:

MMD2(µ|π) =

∫
kπ(x , y)dµ(x)dµ(y) +

∫
kπ(x , y)dπ(x)dπ(y)

− 2
∫

kπ(x , y)dµ(x)dπ(y)

=

∫
kπ(x , y)dµ(x)dµ(y)

= KSD2(µ|π)
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KSD as kernelized Fisher Divergence

Fisher Divergence:

FD2(µ|π) =
∥∥∥∇ log

(µ
π

)∥∥∥2

L2(µ)
=

∫
‖∇ log

(µ
π

)
(x)‖2dµ(x)

"Kernelized" with k :

KSD2(µ|π) =
∥∥∥Sµ,k∇ log

(µ
π

)∥∥∥2

Hk

=

∫
∇ log

(µ
π

)
(x)k(x , y)∇ log

(µ
π

)
(y)dµ(x)dµ(y)

where Sµ,k : L2(µ)→ Hk , f 7→
∫

k(x , .)f (x)dµ(x).

=⇒ minimizing the KSD is close in spirit to score-matching
[Hyvärinen and Dayan, 2005].
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Convergence of WGF - Geodesic convexity

Convergence of the WGF ∂µt
∂t =∇ ·

(
µt∇W2G(µt )

)
starting from

µ0?

I A functional G is (λ)-geodesically convex if it is convex
along W2 geodesics, i.e. if for any t ∈ [0,1]:

G(ρ(t)) ≤ (1−t)G(ρ(0))+tG(ρ(1))−t(1− t)
λ

2
W 2

2 (ρ(0), ρ(1))2

where ρ(t) = ((1− t)I + tT ρ(1)
ρ(0) )#ρ(0)

I If G is λ-convex with λ > 0:

W2(µt , π) ≤ e−λtW2(µ0, π)
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Convergence of WGF - Functional inequalities
How fast G(µt ) decreases along its WGF ?

∂µt

∂t
=∇ · (µtVt ), Vt = ∇W2G(µt )

Apply the chain rule in the Wasserstein space:
dG(µt )

dt
=
〈
Vt ,∇W2G(µt )

〉
L2(µt )

= −
〈
∇W2G(µt ),∇W2G(µt )

〉
L2(µt )

= −
∥∥∇W2G(µt )

∥∥2
L2(µt )

≤ 0.

Assume a functional inequality of the form :∥∥∇W2G(µt )
∥∥2

L2(µt )
≥ 1
λ
G(µt ).

Then, by Gronwall’s lemma,

G(µt ) ≤ e−λtG(µ0).
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Choice of the functional?
Choose the functional depending on :
I the available information on the target π (samples,

unnormalized density)
I KL(.|π), KSD(.|π) require unnormalized density

I MMD(.|π) requires samples of π

I its properties
I the KL(.|π) is λ-geo convex if π is strongly logconcave

(π ∝ exp(−V ) with V λ-convex), the MMD(.|π) and
KSD(.|π) are not in general [Arbel et al., 2019, Korba et al., 2021]

I the KL(.|π) satisfies a functional inequality for small
perturbations of strongly log-concave distributions;
MMD(.|π) and KSD(.|π) satisfy weaker functional
inequalities [Arbel et al., 2019, Korba et al., 2021]

I practical optimization (KSD(.|π),MMD(.|π) can be used
with L-BFGS algorithm, not KL(.|π))
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The KL as a composite functional

KL(µ|π) =

∫
log
(µ
π

(x)
)

dµ(x) if µ� π,+∞ else.

It is written as a composite functional (π ∝ exp(−V )):

KL(µ|π) =

∫
V (x)dµ(x)︸ ︷︷ ︸

EV (µ) external potential

+

∫
log(µ(x))dµ(x)︸ ︷︷ ︸

H(µ) negative entropy

+cte

The W2 gradient flow of the KL is the Fokker-Planck equation:

∂µt

∂t
=∇ ·

µt ∇ log
(µt

π

)
︸ ︷︷ ︸
∇W2

KL(µt |π)

 =∇ ·

µt ∇V︸︷︷︸
∇W2EV (µ)

+ ∆(µt ).

It is the continuity equation (Xt ∼ µt ) of the Langevin diffusion :

dXt = −∇V (Xt ) +
√

2dBt

where (Bt ) is the brownian motion in Rd .
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Gradient flow of the entropy

The gradient flow of the negative entropy H(µ) is the heat
equation

∂µt

∂t
= ∆µt

This has an exact solution which is the heat flow
µt = µ0 ∗ N (0,2tId ).

In space, this is implemented by adding Gaussian noise 2

Xt = X0 +
√

2tZ (2)

where Z ∼ N (0, Id ) and Z independent of X0.

2The true solution of the heat flow is the Brownian motion in space.
However, at each time, the solution has the same distribution as (2)
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Unadjusted Langevin Algorithm (ULA)

Xl+1 = Xl − γ∇V (Xl) +
√

2γξl where ξl ∼ N (0, Id )

and γ > 0 is a step-size.

Problem : ULA is biased (has stationary distribution
πγ 6= π).
We can write ULA as the composition :

Yl+1 = Xl − γ∇V (Xl) gradient descent/forward method for V

Xl+1 = Yl+1 +
√

2γξl exact solution for the heat flow

=⇒ Forward-Flow discretization

In the space of measures P:

νl+1 = (I − γ∇V )#µl gradient descent for EV

µl+1 = N (0,2γI) ∗ νl+1 exact gradient flow for U

This Forward-flow discretization is biased [Wibisono, 2018].
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Forward Backward discretization [Wibisono, 2018, Salim et al., 2020]

G(µ) = EV (µ) +H(µ)

We analyzed :
νl+1 = (I − γ∇V )#µl

µl+1 = JKOγH(νl+1)

where JKOH(νl+1) = argminµ∈P2(Rd )H(µ) + 1
2γW 2

2 (µ, νl+1).

We showed [Salim et al., 2020] that this scheme enjoys the same
rates than proximal gradient in the euclidean setting, i.e.

Assume V is L-smooth, λ-strongly convex, and assume the
step size γ < 1/L and µ0 � Leb. Then for all l ≥ 0:

1. G(µl)− G(π) ≤ W 2
2 (µ0,π)
2γl in the convex case (λ = 0)

2. W 2
2 (µl , π) ≤ (1− γλ)lW 2

2 (µ0, π) when λ > 0

=⇒ faster than ULA (1/
√

l for λ = 0 and 1/l for λ > 0)
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Implementation of the JKO of the negative entropy
I some subroutines exist to compute the JKO [Santambrogio, 2017], or the

JKO w.r.t. the entropy-regularized W2 [Peyré, 2015]

I It is possible to compute the JKO of negative entropy in closed form
in the gaussian case (i.e. for π, µ0 gaussians) [Wibisono, 2018].

Figure: Convergence of µn to π (Top: d=1, Bottom: d=1000). 34/ 54



Forward discretization for the KL

Let µ0 ∈ P2(Rd ). Forward discretization (gradient descent on
(P2(Rd ),W2)) is written:

µl+1 =
(

I − γ∇ log
(µl

π

))
#
µl (3)

where γ > 0 is a step-size.

i.e. in Rd , given X0 ∼ µ0,

Xl+1 = Xl − γ∇ log
(µl

π

)
(Xl) ∼ µl+1 if Xl ∼ µl .

Problem: In practice, we do not know the density µl , we only
have access to particles Xl .

We studied Stein Variational Gradient Descent [Liu and Wang, 2016],
which proposes a particle scheme to implement (3).
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Stein Variational Gradient Descent [Liu and Wang, 2016]

I Let k : Rd × Rd → R a positive, semi-definite kernel
I example : k(x , y) = exp

(
−‖x−y‖2

h

)
I Hk : span(k(x , .), x ∈ Rd )

⊗d

we assume : ∀µ,
∫
Rd k(x , x)dµ(x) <∞ =⇒ H ⊂ L2(µ).

I Define the kernel integral operator Sµ : L2(µ)→ Hk :

Sµf (·) =

∫
k(x , .)f (x)dµ(x) ∀ f ∈ L2(µ)

and denote Pµ = ιHk→L2(µ) ◦ Sµ.

SVGD trick: under mild boundary conditions on k , π, applying
this operator to the W2 gradient of KL(·|π) leads to

Pµ∇ log
(µ
π

)
(·) = −

∫
[∇ log π(x)k(x , ·) +∇xk(x , ·)]dµ(x).
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SVGD discrete time, infinite particles [Korba et al., 2020]

For the scheme:

µl+1 =
(

I − γPµl∇ log
(µl

π

))
#
µl

we showed a descent lemma, for a bounded of k , ∇k , Hessian
of V = log π, and gamma small enough :

KL(µl+1|π)− KL(µl |π) ≤ −cγ
∥∥∥Sµl∇ log

(µl

π

)∥∥∥2

Hk︸ ︷︷ ︸
KSD2(µl |π)

.

Rk: The KL is not smooth so such a descent lemma is specific
to SVGD.

This descent lemma implies

min
k=1,...,l

KSD2(µl |π) ≤ 1
l

l∑
k=1

KSD2(µk |π) ≤ KL(µ0|π)

cγ l
.

Rk: Does not depend on the convexity of V .

37/ 54



SVGD discrete time, infinite particles [Korba et al., 2020]

For the scheme:

µl+1 =
(

I − γPµl∇ log
(µl

π

))
#
µl

we showed a descent lemma, for a bounded of k , ∇k , Hessian
of V = log π, and gamma small enough :

KL(µl+1|π)− KL(µl |π) ≤ −cγ
∥∥∥Sµl∇ log

(µl

π

)∥∥∥2

Hk︸ ︷︷ ︸
KSD2(µl |π)

.

Rk: The KL is not smooth so such a descent lemma is specific
to SVGD.
This descent lemma implies

min
k=1,...,l

KSD2(µl |π) ≤ 1
l

l∑
k=1

KSD2(µk |π) ≤ KL(µ0|π)

cγ l
.

Rk: Does not depend on the convexity of V .
37/ 54



Rates in terms of the KL objective?

To obtain rates, one may combine a descent lemma (1) of the
form

KL(µl+1|π)− KL(µl |π) ≤ −cγ
∥∥∥Sµl∇ log

(µl

π

)∥∥∥2

Hk

and the Stein log-Sobolev inequality (2) with constant λ:

KL(µl+1|π)−KL(µl |π) ≤︸︷︷︸
(1)

−cγ
∥∥∥Sµl∇ log

(µl

π

)∥∥∥2

Hk

≤︸︷︷︸
(2)

−cγ2λKL(µl |π).

Iterating this inequality yields KL(µl |π) ≤ (1− 2cγλ)l KL(µ0|π).

Problem: In general, (2) does not hold [Duncan et al., 2019].
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SVGD discrete time, finite particles [Korba et al., 2020]

Algorithm : Starting from n i.i.d. samples (X i
0)i=1,...,n ∼ µ0,

SVGD algorithm updates the n particles as follows :

X i
l+1 = X i

l − γ

1
n

n∑
j=1

k(X i
l ,X

j
l )∇X j

l
log π(X j

l ) +∇X j
l
k(X j

l ,X
i
l )


︸ ︷︷ ︸

Pµ̂l∇ log
(
µ̂l
π

)
(X i

l )

where µ̂l = 1
n
∑n

j=1 δX j
l
. How far is µ̂l from µ̄l (empirical

measure of n i.i.d. particles ∼ µl )?

Propagation of chaos result (non uniform in time)
Let l ≥ 0 and T > 0. Under boundedness and Lipschitzness
assumptions for all k ,∇k ,V ; for any 0 ≤ l ≤ T

γ we have :

E[W 2
2 (µ̄l , µ̂l)] ≤ 1

2

(
1√
n

√
var(µ0)eLT

)
(e2LT − 1)

where L is a constant depending on k and π.
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Open questions

Numerics;
I Closed-form or efficient subroutines for JKO (e.g. the JKO

of the negative entropy)?
Theory:
I Rate of convergence in the KL objective for SVGD?
I uniform in time Propagation of chaos for a convex

potential?
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Quantization problem

Problem : approximate a target distribution π ∈ P(Rd ) by a
finite set of n points x1, . . . , xn, e.g. to compute functionals∫
Rd f (x)dπ(x).

The quality of the set can be measured by the integral
approximation error:

err(x1, . . . , xn) =

∣∣∣∣∣1n
n∑

i=1

f (xi)−
∫
Rd

f (x)dπ(x)

∣∣∣∣∣ .
Several approaches, among which :
I MCMC methods : generate a Markov chain whose law

converges to π, err(x1, . . . , xn) = O(n−1/2)

I deterministic particle systems, err(x1, . . . , xn)?
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Motivation

(a) SVGD Gaussian (b) NSVGD Laplace

(c) MMD-lbfgs (d) i.i.d.

Figure: (a)-(c) Final states of the algorithms for 1024 particles, after 1e4
iterations. Ring structures tend to appear with the Gaussian kernel. The
kernel bandwidth for all algorithm is set to 1. 43/ 54



We are interested in establishing bounds on the quantization
error

Qn = inf
Xn=x1,...,xn

D(π, µn), for µn =
1
n

n∑
i=1

δxi ,

where D is the MMD or KSD.

Remark: For x1, . . . , xn ∼ π i.i.d., the rate is known to be
O(n−1/2) [Gretton et al., 2006, Tolstikhin et al., 2017, Lu and Lu, 2020].

We first consider the following assumption on the Fourier
transform of kernel k .

Assumption A1: Let k(x , y) = η(x − y) a translation invariant
kernel on Rd . Assume that η ∈ C(Rd ) ∩ L1(Rd ), and that its
Fourier transform verifies : ∃C1,d ≥ 0 such that
(1 + |ξ|2)d/2 ≤ C1,d |η̂(ξ)|−1 for any ξ ∈ Rd .

(Satisfied for the Gaussian and Laplace kernel.)

44/ 54



We are interested in establishing bounds on the quantization
error

Qn = inf
Xn=x1,...,xn

D(π, µn), for µn =
1
n

n∑
i=1

δxi ,

where D is the MMD or KSD.

Remark: For x1, . . . , xn ∼ π i.i.d., the rate is known to be
O(n−1/2) [Gretton et al., 2006, Tolstikhin et al., 2017, Lu and Lu, 2020].

We first consider the following assumption on the Fourier
transform of kernel k .

Assumption A1: Let k(x , y) = η(x − y) a translation invariant
kernel on Rd . Assume that η ∈ C(Rd ) ∩ L1(Rd ), and that its
Fourier transform verifies : ∃C1,d ≥ 0 such that
(1 + |ξ|2)d/2 ≤ C1,d |η̂(ξ)|−1 for any ξ ∈ Rd .

(Satisfied for the Gaussian and Laplace kernel.)

44/ 54



First result for the MMD

Theorem: Suppose A1 holds. Assume that (i) π is the
Lebesgue measure or (ii) a non-negative normalized Borel
measure on [0,1]d . Then, there exists a constant Cd , such that
for all n ≥ 2,
I if (i): there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)d−1

n
.

I if (ii): there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)

3d+1
2

n
.
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Proof: Denote by Hk the RKHS of k , we have:

Hk =
{

f ∈ C(Rd ) ∩ L2(Rd ), ‖f‖2
Hk

:=
1

(2π)d/2

∫
|η̂(ξ)|−1 |̂f (ξ)|2dξ <∞

}
.

We also have that the Hd = W d,2(Rd ) Sobolev norm of f is

‖f‖2
Hd =

∫
(1 + |ξ|2)d/2 |̂f (ξ)|2dξ.

Moreover, A1 =⇒ ∃C1,d s.t. ∀ξ, (1 + |ξ|2)d/2 ≤ C1,d |η̂(ξ)|−1. Hence,
Hk continuously embeds into Hd and for any f ∈ Hk , ‖f‖Hd ≤ ‖f‖Hk .

We then use a Koksma-Hlawka inequality [Aistleitner and Dick, 2015](Th1):∣∣∣∣∣
∫

[0,1]d
f (x)dπ(x)− 1

n

n∑
i=1

f (xi )

∣∣∣∣∣ ≤ D(Xn, π)V (f ),

I D(Xn, π) = 2d supI=Πn
i=1[ai ,bi ]

|π(I)−µn(I)| is the discrepancy of the
point set Xn, can be bounded by [Aistleitner and Dick, 2015](Cor 2)

I V (f ) =
∑
α : |α|≤d 2d−|α|‖∂αf‖L1(π) is the Hardy & Krause

variation of f which can be bounded by 4d‖f‖Hd .

By the definition of MMD , we have that MMD(µn, π) ≤ 4dD(Xn, π).
46/ 54



Result for non compactly supported distributions π

Proposition: Suppose A1 holds and that k is bounded.
Assume π is a light-tailed distribution on Rd (i.e. which has a
thinner tail than an exponential distribution). Then, for n ≥ 2
there exist points x1, ..., xn such that

MMD(π, µn) ≤ Cd
(log n)

5d+1
2

n
.

Proof: Decompose :

MMD(π, µn) ≤ MMD(π, µ) + MMD(µ, µn),

and choose µ compactly supported on An = [− log n, log n]d .
As π is light-tailed, µ is close to π in L1 distance, and we first get
MMD(π, µ) ≤ C/n.
Then, we can take a discrete µn supported on An and bound MMD(µ, µn)
using similar arguments as the previous Theorem.
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Result for the KSD

Theorem: Assume that k is a Gaussian kernel and that π ∝ exp(−U)
where U ∈ C∞(Rd ) is such that U(x) > c1|x | for large enough x ,
there exists polynomial f with degree m such that ‖∂αU(x)‖ ≤ f (x)
for all 1 ≤ |α| ≤ d . Then there exist points x1, ..., xn such that

KSD(µn|π) ≤ Cd
(log n)

6d+2m+1
2

n
.

We note that for Gaussian mixtures π, U satisfies the conditions of
the theorem.

Proof: The proof relies on bounding the first and last term of the KSD(µn, π)
as the cross terms can be upper bounded by the former ones by a simple
computation.
Then, the two remaining terms in the KSD(µn, π) are treated independently
as two MMD(µn, π), with k1(x , y) = s(x)T s(y)k(x , y) and
k2(x , y) =∇ ·x ∇y k(x , y).
The second one is controlled by our Proposition on MMD’s for bounded
kernels. The first one relies on controlling ∇ log π Sobolev norms and our
Proposition for MMD.
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Algorithms

we investigate numerically the quantization properties of :
I SVGD
I MMD descent
I KSD Descent
I Kernel Herding (KH) : greedy minimization of MMD(.|π)

I Stein points (SP) : greedy minimization of KSD(.|π)

Hyperparameters:
I kernel: Gaussian, Laplace...
I bandwith of the kernel
I step-size
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SVGD

We found that
I Laplace kernel leads to more regular configurations than

Gaussian kernel

Figure: Example of a 2D Gaussian mixture. The configuration of 128
particles are plotted in green at initialization, and in different colors after
convergence. The light grey curves correspond to their trajectories. From left
to right: SVGD with Gaussian and Laplace kernel, γ=0.5, after 1000 iters

50/ 54



Quantization rates of the algorithms, π = N (0, 1
d Id)

2D 3D 4D

Figure: Each point is the result of averaging 3 runs of each algorithm run for
1e4 iterations, where the initial particles are i.i.d. samples of π. MMD/KSD
Descent use bandwidth 1; SVGD use Laplace kernel with median trick;
NSVGD use Laplace kernel with adaptive choice of bandwidth. Stein points
use gridsize = 200 points in 2d, 50 in 3d; in 4d grid search was too slow.
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d Eval. SVGD NSVGD MMD-lbfgs KSD-lbfgs KH SP

2 KSD -0.98 -0.94 -1.48 -1.46 -0.84 -0.77
MMD -1.04 -1.00 -1.60 -1.54 -0.93 -0.77

3 KSD -0.91 -0.81 -1.38 -1.44 -0.84 -0.78
MMD -0.96 -0.91 -1.51 -1.49 -0.92 -0.75

4 KSD -0.91 -0.81 -1.35 -1.39 -0.89 –
MMD -0.94 -0.89 -1.46 -1.40 -0.95 –

8 KSD -0.84 -0.80 -1.14 -1.16 – –
MMD -0.77 -0.90 -1.25 -1.13 – –

Table: Slopes for the quantization measured in KSD/MMD, for the
different algorithms at study and several dimensions d .

Some remarks:
I The slopes remain much steeper than the Monte Carlo

rate, even when the dimension increases
I MMD/KSD Descent performs the best, but they are

designed to minimize the MMD/KSD
I Their slopes are better than our theoretical upper bounds
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Robustness to evaluation discrepancy

Figure: Importance of the choice of the bandwidth in the MMD
evaluation metric when evaluating the final states, in 2D. From Left to
Right: (evaluation) MMD bandwidth = 1, 0.7, 0.3.

I if we measure the discrepancy using a kernel with smaller bandwidth,
MMD and KSD results deteriorate significantly and SVGD/NSVGD
perform the best.

I likely reason : SVGD samples are more regular, while samples of MMD
and KSD with Gaussian kernel have internal structures which can affect
the discrepancy at lower bandwidths. 53/ 54



Conclusion, open questions

Many problems in ML can be formulated as the
minimization of a functional on probability distributions :

min
µ∈P2(Rd )

G(µ)

Many ideas from optimization can be useful in this setting

(perturbation of dynamics, adapted discretizations...)

Open questions:
I numerics (improve the convergence of the schemes)
I theory : accurate rates of convergence in time and number

of particles

Thank you!
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