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El Unbalanced Optimal Transport: a relaxation viewpoint
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X; Polish topological spaces (the topology is induced by a separable and complete metric).

M(X) is the space of nonnegative Borel measures L on X with finite mass p(X) < oo.

We introduce a function h : (Xo x R ) x (X; x R,) — [0, +00] which characterizes the cost of connecting
two Dirac measures with possibly different mass:

’ h(xo, To; X1, T1) := UOT pjrac(T00xy, T10x, ) X1 € Xi, 11 =0

Simplifying assumptions: for every xq, X1

h(xo, To;x1,0) isindependent of x;, h(xg,0;x1,71) isindependent of xg.
(1o, 11) = h(x0,T0; X1, T1) s positively 1-homogeneous and convex

Cone space: identify all the points (x, 0) with the vertex o (they correspond to the null measure 05, = 0)

X/ XN, T./ :T.H #0'

¢X]:= (Xx[0,00)/~ (' 1)~Kx"1") &



The Balanced OT case: ¢ : Xy x X; — R is a cost function,

rc(xg,x1) ifrg =11 =71]
h(xq, To; X1, T1) = )
400 if 1o # 11



The Balanced OT case: ¢ : Xy x X; — R is a cost function,

rc(xg,x1) ifrg =11 =71]
h(xq, To; X1, T1) = )
400 if 1o # 11
The Hellinger-Kakutani case:
(ﬁ07ﬁ1)2:r0+r172\/‘r0r1 ion = X1

400 if Xo # X1

h(xq, To; X1, 1) =



The Balanced OT case: ¢ : Xy x X; — R is a cost function,

rc(xg,x1) frg=11 =1,
h(xq, To; X1, T1) = )
400 if 1o # 11
The Hellinger-Kakutani case:
(\/Fof\/¥IJ2ZT0+T'172\/T0T1 ion = X1

400 if Xo # X1

h(xq, To; X1, 1) =

The Entropic Unbalanced Cost
h(xo, To; X1, T1) = To + T1 — 2y/Torre (x0x1)

= (VR0 — Vi) +2vmm(1—ectom).
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Unbalanced Optimal Transport as convex envelope

What is the most natural way (from the convex analysis viewpoint) to extend UOT pj;ac

h(xo, T0; X1, T1) = UOT pirac (T0dxq» T10x;)  Xi € Xi, 11 2> 0

to a function in M(Xg) x M(X1)?

I'-relaxation of UOT p;,»c: the largest convex and L.s.c. functional I'-UOT pirac : M(Xg) X M(X1) — [0, +00]
dominated by UOT pjac:

I UOTDlrac(roéxoy T1 xl] < UOTDlrac(roéxor rléxl) for every 1y > O, Xi € Xi
UOTconvex, I.s.c., UOT < UOTpiae =  UOT < M-UOTpirac.
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Two equivalent constructions

If . % :V — (—o0, +00] is a given function, defined in a vector space V in duality with V', its '-regularization
can be characterized in two equivalent ways:

 Using the Legendre transform thanks to Fenchel-Moreau Theorem:

T (§) =sup(d,v) —F(v), eV
vev

I-Z(v) = F™(v) = sup ($,v) — F" ()
bev’

« Computing the convex envelope:
co.F (v) = inf{Z o F(vi) t oy =0, Z o =1, Z xiVi :v}
i i i

and then taking the I.s.c. relaxation of co.Z (v). If % is coercive we have the integral description

I-Z(v) = min {J

F(w)da(w) : x € P(V), J
\%

vwdoc(w) :v}.



Convex duality
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Convex duality

I'-UOT p;rac can be computed by Legendre transform thanks to Fenchel-Moreau Theorem, using the duality
between M(X) and Cy (X).

UOT D ac (o, 1) = sup {Tod)o(xo) +11d1(x1) —h(xo, To;x1,11) 111 20, X4 € Xi}
0 if rodo(xo) + 11d1(x1) < h(xo, 105 %1, T1),

+o00 otherwise

UOTY,,.. is just the indicator function of a convex set K[h] of admissible Kantorovich potentials

Dirac

(do, d1) € Cp(Xo) x Cyp(X1)-

The dual Kantorovich formulation of Unbalanced Optimal Transport

I'-UOT pirac (Mo, 1) = UOTBTMC(P'O, W)=

—sup { | Gudo+ [ 01 s : (4o, 90) € Kina}.
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Primal formulation

How to represent convex combinations of pair of Dirac masses?
Given o > 0, Y, o = 1, we may consider

(o, 1) = Z o (To.kOxg 1 T1kOx; 1)
”

~ T-UOT pirac (Mo, t1) < Z ouch(Xo k. Toks X1k, T1k) = Jhdo&
Kk

0= 0B (xg e monixiiriy) € P(Xo X Ry x Xp x R)
k
Constraints:

(&) = 3 oo, (A) = | o dex(xo, To; X1, 1)
X AXR 4 X X1 xR 4
=hoax(A)
w(B) = Z (Xle,kﬁka (B) = J T da(xo, To; X1, T1)
X XoXR 4 xBxR
= bh1(B)

’ o = hooxt = 0 (1x), Wy = hiox = T (1) 1-homogeneous marginals of o ‘ )
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Representation

We introduce the set of plans with homogeneous marginals 1, 1;:

Hlbo, m) i= {@ € P(Xo x Ry x X x Ry ) :

hoox = 1, (To&X) = po, hrox = 7 (&) = Hl}

Primal formulation

UOT (g ) = min { [ (o, i xa,72) doxs e € (o, )

It is possible to check that UOT is convex, I.s.c., and it is dominated by UOT p;.., so that
UOT(H’Ov ul) < UOT*DTrac ( Ho, K1 )

On the other hand it is also immediate to check that

UOT (1o, p1) = UOT 5ioc (Mo, H1),

Primal-dual equivalence of Unbalanced Optimal Transport

UOT (Ko, 1) = UOT 5, (Mo, 1a) = sup { J% duo +J¢1 dus : (o, d1) € K[h}},

K[h] = {(Cbm 1) € Cu(Xo) x Cy(Xq) : modo(xo) + 11 (1) < h(XovTo;XLH)}-



The link with Optimal Transport in the cone space
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The link with Optimal Transport in the cone space

Consider the space €[X;] = (X; x R, )/ ~ and the cost functional h. It induces the OT problem
OTh (g, ®1) = min { Jhdoc: e Moy, 0(2)}.

We have
Optimal transport formulation via homogeneous marginals

UOT (1o, 1) = min { OTy (o, o1) : et € P(EIX), b = b }
where

Xy
hoi = Ty (riogi).

How to choose interesting costs h? We discuss the particular case of the hellinger-Kantorovich metric,
induced by the natural cone distance on ¢[R4].



B The Hellinger-Kantorovich metric between positive measures of arbitrary mass
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The dynamic perspective

Let u € C°([0, 1]; M(R9)), (v, w) : R¢ x (0, 1) — R4+ be a Borel vector field satisfying

J'IJ (Ivt(xJP +wf(x)) dpte (x) dt < oo.

0
Continuity equation with reaction governed by the field (v, w) if

depe + V- (vepe) =2wepe in 2'(R? x (0,1)) (CER)

The Hellinger-Kantorovich distance via dynamic interpolation

1
HC (10, 1) = min{J j(w + bwil?) di dit 2 € C(10, 11 M(R),
0
Oty + V- (Vi) = 2wy, Himi = Hi}-

This approach has been independently proposed by
KONDRATIEV, MONSAINGEON, VOROTNIKOV and CHIZAT, PEYRE, VIALARD, SCHMITZER.



The distances between two Dirac masses
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(x,7):[0,1] = R x R, (x(i),r(i)) = (x4, 11)i =0, 1}



The distances between two Dirac masses

Suppose that p; = rféxi; if we look for py == 12(t)8x 1)
Oty + Vo (leve) = 2w, we(x(t)) = x(t),  we(x(t)) =7(t)/r(t)
We can compute

1
HC (1284, 128, ) = min { j (POKOP + R de
0

(x,7):[0,1] = R x R, (x(i),r(i)) = (x4, 11)i =0, 1}

HK is associated to the cone distance:

dz((xo, 7o), (x1,71)) = 15 + 13 — 21071 COs([x1 — Xol)

where cos, (1) = cos(r A o). de((x0, To), (X1, 1)) is a length distance.



The distances between two Dirac masses

Suppose that p; = rféxi; if we look for py == 12(t)8x 1)
Oty + Vo (leve) = 2w, we(x(t)) = x(t),  we(x(t)) =7(t)/r(t)

We can compute

1
HC (1284, 128, ) = min { j (POKOP + R de
0

(x,7):[0,1] = R x R, (x(i),r(i)) = (x4, 11)i =0, 1}

HK is associated to the cone distance:

dz((xo, 7o), (x1,71)) = 15 + 13 — 21071 COs([x1 — Xol)

where cos, (1) = cos(r A o). de((x0, To), (X1, 1)) is a length distance.

Truncation effect: when [xg — x;| > 71/2 a better competitor is provided by 1, := [(1 — t)10]?8x, + (tr1)%0x,
and we have
HK? (1380, 28, ) = To + 12,



The distances between two Dirac masses

Suppose that p; = rféxi; if we look for py == 12(t)8x 1)
Oty + Vo (leve) = 2w, we(x(t)) = x(t),  we(x(t)) =7(t)/r(t)

We can compute

1
HC (1284, 128, ) = min { j (POKOP + R de
0

(x,7):[0,1] = R x R, (x(i),r(i)) = (x4, 11)i =0, 1}

HK is associated to the cone distance:

dz((xo, 7o), (x1,71)) = 15 + 13 — 21071 COs([x1 — Xol)

where cos, (1) = cos(r A o). de((x0, To), (X1, 1)) is a length distance.

Truncation effect: when [xg — x;| > 71/2 a better competitor is provided by 1, := [(1 — t)10]?8x, + (tr1)%0x,
and we have
HK? (1380, 28, ) = To + 12,

HK? (13855, T28x,) = T2 + 12 — 2171 €S 2(Ix1 — Xol)




The Cone space
Cone metric:  d2((xg, o), (x1,71)) =13 + 13 — 2107 cos(Ixs — Xol)

Cone space: identify all the points (x, 0) with the vertex o.

X' =x" 1 =1"#£0,
¢ = (Rd X [O' oo))/ ~ (X/,T'/) . (X”,T‘”) N 75
7 s =0



The Cone space

Cone metric: di.((xo, T9), (X1, 11)) = ré + r% — 21971 cosx (X1 — xol)

identify all the points (x, 0) with the vertex o.

¢ = (Rd X [0,00))/ ~,

Cone space:

X/ — X”, r/ — ,r/l 0’
1)~ ") & 7

r'=1r"=0

—_—— o

e x, o

i {
6|z (

¢ \ {0} can be considered as a smooth Riemannian manifold with metric

LI )



Unbalanced transport: the link with the relaxation viewpoint
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Unbalanced transport: the link with the relaxation viewpoint

H? is a convex and subadditive functional

We introduce a function h : (R x R, )?> — [0, +00) which characterizes the cost of connecting two Dirac
measures with possibly different mass:

h(xo, To; X1, 1) := H<2(T05x01r16x1) = di((xo, \/170), (x1, \/7'»1))
=719+ 11— 2y/ToT1 COSR/Q(‘XI *Xo” xX; €X;, 11 =0

(ro,T1) > h(xg,T0; X1, T1) is positively 1-homogeneous and convex

thanks to the truncation (— cos,/» < 0). Define UOT pirac (Lo, H1) = HC (o, 1) if py = 110, , +00 otherwise.

HK? is the T-relaxation of UOT piac - the largest convex and lower semicontinuous functional defined in
M(R) x M(R) — [0, +oc0] dominated by UOT pjrac

UOT convex, l.s.c., UOT < UOTpiae = UOT < HK2.
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B = m°(13er) = o, bl = m (rFer) = pu |



Representation

H(ko, ) = {cx € P(Xo xRy x Xy xRy ) :
B = m°(13er) = o, bl = m (rFer) = pu |

Primal formulation

H (1o, 11) = min {Jh(xO,ré;xl,rf)do&: € H( o, m)}

= min { [ €2((x0, 7o), (x1, 7)) s ox € (1, )}




Transport-growth pairs

We can represent & € (o, 1) as & = ((To, qo), (T1, 1)) A where A € M(Y), Y is some Polish space,
and (Ti,qi) : Y — R? x R, with q; € L2(A).
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and (Ti,qi) : Y — R? x R, with q; € L2(A).

We say that (T, q;) is a transport-growth pair. (T, q) acts on A according to this rule:

(T, @).A = T;(q’A) = H((T, q);A),

|'K2(Hoy 1) = min {J

(qé +q% — 2q0q:1 OS2 \T07T1|) d?\) AeM(Y),
YXY

Y Polish, (T:, qi): Y — R x R, i := (Ts, qi)*A};

moreover, it is not restrictive to choose Y = ¢[R4] x ¢[R4].



Transport-growth pairs

We can represent & € (o, 1) as & = ((To, qo), (T1, 1)) A where A € M(Y), Y is some Polish space,
and (Ti,qi) : Y — R? x R, with q; € L2(A).

We say that (T, q;) is a transport-growth pair. (T, q) acts on A according to this rule:

(T, @).A = T;(q’A) = H((T, q);A),

|'K2(Hoy 1) = min {J

(qﬁ +q% — 2q0q:1 OS2 \T07T1|) d)\] AeM(Y),
YXY

Y Polish, [Ti, ql) Y — ]Rd X R+, Wi = (Ti, %)*7\};

moreover, it is not restrictive to choose Y = ¢[R4] x ¢[R4].

Problem (Monge formulation of HK)

Given Ly, 111 € M(R®) find an optimal transport-growth pair (T, q) : RY — R x R, minimizing the cost

A (T, q; 1o)== J (1 + q?(x) — 2q(x) cosr/» IT(X)—X\) duo(x) (1)

among all the transport-growth maps satisfying (T, q)s« o = M1



Duality with the conical Hamilton-Jacobi equation

0uke + D& +281(x) < 0 (CHY)
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then
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Duality with the conical Hamilton-Jacobi equation

0uke + D& +281(x) < 0 (CHY)

and
Oty + V- () = 2wy

then

1
JEI duy _J'EO due < EJ J <|\’t\2 +W%) dp dt.
0

H in duality with subsolutions to the conical Hamilton-Jacobi equations

1
§|‘K2(H0, 1) = sup {J& diy —Jio dio : & € CH([0, 1]; Lip, (RY))

1
3:&: + 5IDE® +2€2 < 0f.



Conical Hopf-Lax representation formula

Given &, € Lip, (R) with & > —1/2, the viscosity solution (or the maximal subsolution) of the conical

Hamilton Jacobi equation

1
0¢ & + §‘D£t|2 + 25% =0

(CHJ)

is given by the conical Hopf-Lax semigroup (cf. BARRON-JENSEN-LIU for different representation formulae)

PE(x) = inf 1 1

cos? 51y —x)

14 2t&(x)

(CHL)



Conical Hopf-Lax representation formula

Given &, € Lip, (R) with & > —1/2, the viscosity solution (or the maximal subsolution) of the conical
Hamilton Jacobi equation

1
0y + §\D£t|2 +282=0 (CHY)

is given by the conical Hopf-Lax semigroup (cf. BARRON-JENSEN-LIU for different representation formulae)

1 {1 o5t iy — x\)} o

FeElx) = inf o 1+ 2tE(x)

Conical Hopf-Lax representation for HK

1
*"KZ(H{J: 1) :SUP{JEJ dwy —Jio dug: & = 9’150}

2



Conical lift of the Hopf-Lax formula

Formally, if & is a solution of

1
0¢&¢ + §|D£t‘2 < 25,% <0

then’ Ce(x, 1) = & (x)r? ‘is a solution of

since

1
0¢Ce + §|Dcct|2 <0

l 2_1 * _1 l 2 2\ _ l 2 2\..2
SIDeCP = 25" (Dx,8:0) = 5 (51D<CP + (2r0)?) = (GIDE + 28 )r

(CHJ)

20



Conical lift of the Hopf-Lax formula

Formally, if & is a solution of
1
0c&e + EID&F +28; <0 (CHJ)

then’ Ce(x, 1) = & (x)r? ‘is a solution of

1
0¢Ce + §|D6Ct|2 <0 (HJ)

since
1 2_1* _l l 2 2\ l 2 2).2
SIDeC? = 56" (D48, 8:0) = 5 (5IDuCP + (3,0)7) = (5ID&f +283)r

The Hopf-Lax semigroup in €
. 1
2EC(xr) = min £y, s) + S de((x,7), (y, 5)
1
=min&(y)s? + — (1‘2 +s2—2rs cos(\x—y|n)>
y,s 2t

yields

DEL(x,1) = & ()17, & = DL,

20



Dual formulation (Il)

Change of variable: @, := —3 log(1 — 2&;), @o := 3 log(1 + 2&o)

_coszlly —xI)

28:(y) <1 1+ 2850)

©1(y) — @o(x) < Ly —x),

1 1
{Ur) = ~5 log (cosft/2 \rl) =3 log (1 + tanf,/2 |r\>, D{(r) = tan(r)

24



Dual formulation (Il)

Change of variable: ¢; := f% log(1—2&;), @o := % log(1 + 2&,)

o5t ally =)

28(y) <1 1+ 2850)

©1(y) — @o(x) < Ly —x),

1 1
{r) = ~5 log (cosft/2 \rl) =3 log (1 + tanf,/2 |r|>, D{(r) = tan(r)

Dual Kantorovich formulation

1
EI'KZ(uo,ul) =sup

24



Primal formulation: Logarithmic Entropy-Transport problem

29



Primal formulation: Logarithmic Entropy-Transport problem

The Legendre conjugate of G(¢) := %(ez‘P — 1) is
G*(s) :ELE(S), LE(s) :==slogs — (s —1)
When 7y is a plan in M(R? x R%) with marginals ; we find

Logarithmic Entropy-Transport (LET) formulation

ET (o) = min  (S(rolio) + i) +2 [ty —x) dylx,v))

yeEM(RA xRA)

where {(r) = 3 log(1 + tan? ,(Ir])).

29



Primal formulation: Logarithmic Entropy-Transport problem

The Legendre conjugate of G(¢) := %(ez‘P — 1) is
G*(s) :ELE(S), LE(s) :==slogs — (s —1)
When 7y is a plan in M(R? x R%) with marginals ; we find

Logarithmic Entropy-Transport (LET) formulation

ET (o, bs) = min (& (ylua) + S(va) + 2 ey —x) dylx,v)

yeEM(RA xRA)

where {(r) = 3 log(1 + tan? ,(Ir])).

|‘K2(Ho. u1) = LET (uo, p1)

29



Four equivalent formulations for HK

Dynamic
formulation

)

Optimal
Entropy-Transport

Duality
—

—

Convex
duality

Conical Hamilton
Jacobi

1} Conical Hopf-Lax

Kantorovich
duality

72



Four equivalent formulations for HK

Dynamic Duality  Conical Hamilton
formulation Jacobi
II II Conical Hopf-Lax
Optimal Kantorovich
Entropy-Transport G duality
duality

HC (o, 1) = miin { Ej(w + wil?) die dt: € C([0, 1; M(R)),
Octte + Vo (Vepe) = 2wy, Bemi = Ui}
— 2sup {Jal diy —JEodp,o L& € CH([0, 1; Lipy (RY))
0,£, + SIDE + 282 < 0}
—2sup { [ £1dus — [ duo s &1 = 71t}

— min & (Yalia) + S(iua) + 2 tx, ) dylx, ).

(CER)

(CHJ)
(CHL)

(LET)
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E Geodesics and geodesic convexity
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Important properties

o (M(RY), K) is a complete and separable metric space if X is complete and separable; the induced
topology coincides with the topology of weak convergence (no bounds on moments are required).
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Important properties

o (M(RY), K) is a complete and separable metric space if X is complete and separable; the induced
topology coincides with the topology of weak convergence (no bounds on moments are required).

« (M(RY), K) is geodesic

. If gy < 4 then there exists a unique geodesic connecting | to 1 and a unique optimal plan y
minimizing LET (W, 11).

25



Important properties

o (M(RY), K) is a complete and separable metric space if X is complete and separable; the induced
topology coincides with the topology of weak convergence (no bounds on moments are required).

- (M(R4), K) is geodesic
o f py < %4 then there exists a unique geodesic connecting po to 1 and a unique optimal plan y

minimizing LET (1o, 1).

Problem

Characterize geodesics and study the convexity properties of integral functionals.

In particular, we want to prove that power-like entropies
Enll) ::Jc"‘dx, n=c%?

are geodesically convex if o« > 1 (reinforced McCann condition).



The 71/2 treshold and HK geodesics between Dirac masses

Ho = T38xy, H1 = 128y, Ix1 — X0l € [0, 7, p¢ := 185, geodesic.

Initial velocities (1, v) € R x R4

I T . . .
u = = cos(|x1—xol) — 1 vi= Zsin(x1—%o),  sin(w):=sin(lw])—
To To [w
curve:
72 tv
T =T 1+tu2+t2v2> , Xt := Xg + arctan )
= To((1+tu)? + £ = o+ arctan (g
1.0 4 i
; !
08 - : |
.
/ :
0.6 / i
! '
0.4 A / :
; !
K !
0.2 - X i
) !
:
0.0 4 S=---------- oo IITIIIIICIIIIIIICIIIIIIII L oo ’
3.0
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Regularity of optimal potentials for the LET formulation

For every o, i € M(R?) there exists a pair of optimal potentials (@o, ©1) such that
@1(y) — @o(x) < 2{(y —x) and

HC (o, 1) = Ju 201 dyy — J(e“o _ 1) du.



Regularity of optimal potentials for the LET formulation

For every o, i € M(R?) there exists a pair of optimal potentials (@o, ©1) such that
@1(y) — @o(x) < 2{(y —x) and

HC (o, 1) = Ju 201 dyy — J(e“o _ 1) du.

The Optimal potential @ is locally semiconcave outside a closed (d — 1)-rectifiable set.
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Regularity of optimal potentials for the LET formulation

For every o, i € M(R?) there exists a pair of optimal potentials (@o, ©1) such that
@1(y) — @o(x) < 2{(y —x) and

HC (o, 1) = Ju 201 dyy — J(e“o _ 1) du.

The Optimal potential @ is locally semiconcave outside a closed (d — 1)-rectifiable set.
When ny < £% and ul{y € R4 : d(y, supp(io)) = 71/2} = 0, then Monge formulation has a unique
solution (T, q) such that (T, q).Ho = w1 and

tan(T(x) —x) = V@o(x), ¢(x) = (2%°))? + %\Ve2‘”°(>¢)l2

After the transformation & := 1 (e2#0 — 1) we can identify

T(x) = x + arctan ( 13;; ) q% = (1428)% + | V&2
0

(g, ) = (T, i) = | (483 + 1V E0P)
R4

Tanaent space: Tan.. M(R4) = HI2(RY ). o



Geodesics

Recalling

T(x) = x + arctan(lzsz ) 42 = (14289)% + [V &,
0

the geodesic interpolations can be obtained by rescaling &y ~ t&g, t € [0, 1]:

< tV&o

— 2 ._ R o o 2
To_¢(x) := x + arctan 1T 2tee(x) ) Qo1 (x) = (14 2t&p(x))” + 7|V (x)]

They provide an explicit characterization of the unique H< geodesic connecting 11y to 11;:

q%at(x)

e = (Tost, Gost) Mo, He = Ctofd, ct(Tose(x)) = Co(’dm
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Geodesics

Recalling
Vo 2 2 2
T(x :x—i—arctan( ) = (142 +1|V
(x) Do) @0 =428 +IVE
the geodesic interpolations can be obtained by rescaling &y ~ t&g, t € [0, 1]:
tVE&
T = : <7> < =(1+2t 2 v 2
0-t(x) := x + arctan T 2tes () Qo (x) == (14 2t&o(x))? + t*[VE (x)
They provide an explicit characterization of the unique H< geodesic connecting 11y to 11;:
e = (Tosst, Gost)«Mo,  He = c L9, ci(Tosi(x) = CO(X)M
det DTo_¢(x)

Simplifying assumption: i, 11; have compact support,
supp(p1) C Brya(supp(po)), supp(po) C Brya(supp(pa)).

Optimal potentials @q and &g are semiconvex, @1 and &; are semiconcave, all the functions are globally
Lipschitz and for suitable constants a, b € R

1
—5<—a<&K)<b —bL<EH) <ax<

N =
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Dynamic optimality conditions for geodesics

Theorem (Formal)

A continuous curve (L) ic(0.1] iS @ geodesic if and only if there exists a curve (&) ic(o.1] Such that

Oty + V- (eve) = 2wy g
1
ke + 5IVES 428 <0
1
0:&¢ + §\V£t|2 +282 =0 on the support of i1,

vy = V&

wy = 2&;

20



Dynamic optimality conditions for geodesics

Theorem (Formal)

A continuous curve (L) ic(0.1] iS @ geodesic if and only if there exists a curve (&) ic(o.1] Such that

Oty + V- (eve) = 2wy g
1
ke + 5IVES 428 <0
1
0:&¢ + §\V£t|2 +282 =0 on the support of i1,

vy = V&

wy = 2&;

Characteristic flow: fix s € (0,1) T(t,) := To¢(:), q(t,) :== qs— (),

(t,x) = VE(T(t,x))
qlt,x) =4&(T(t,x))q(t, x)
T(s,x) =x,

q(s,x) = 1.

20



Formal computations

Qe + %\V&JZ +282=0.
Characteristic flow: T(t,-) := T_(-), q(t,) == qs_e(-),
T(t,x) = VE(T(t,x))
{C'l(tr x) = 4&(T(t,x))q(t, x)

20



Formal computations

1
9 & + f\vat\2+2a2 =10

Characteristic flow: T(t,:) =T ,¢(-), q = th()
T(t,x) = VE&(T(t,x))
{q t,x) = 4E(T(t, x))q(t, x)
B(t,:) :=DT(t,), 8(t, ) := det B(t, -)
T(t) = 0 VE(T (1) + D&, VE(T(t)),

3:VE = —D?E, VE, + 45, VE,
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Formal computations

1
9 & + f\vat\2+2a2 =10

Characteristic flow: T(t, ) =T, (-), q = th()
T(t,x) = VE(T(t,x))
{Cl t,x) =48 (T(t,x))q(t, x)
B(t,:) :=DT(t,), 8(t, ) := det B(t, -)
T(t) = 3 VE(T (1)) + D& VEL(T (1)),

0. VE = —D?E, VE + 45, VE,

T(t) = 4L, VE(T (1)
q(t) = [VE(T)Pq(t)
B(t) = —4(V&. ® V. + £D%,) o T(t) - B(t)

B(t) = ((A8)2 — ID2Eu2 — AIVEP — 4EAE,) o T(1) - 5(1).




Structural second order estimates for the densities

W = c(t, )24 with

_ 9’ _ 9P _ qT(Y) _
()= = qet9 ~ e (P08 )]
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Structural second order estimates for the densities

W = c(t, )24 with

Q?(t)  q?(t)  qYT3(1)

_ _ _ — /
()= = et~ prr [P =48]
: q(t) p(t) 4\ 4(t)
Structural estimates m >0, m < (1 — a) W
since the previous identities yield

M _ gs p

ag =V

plt) 1

B = & (a2 - aprep) + (1- 5)vep

29



Structural second order estimates for the densities

W = c(t, )24 with

()= SEE) - qorE) - gt
5(t)  qd(t)s(t)  pd(t)

t o(t
Structural estimates q(t) >0, p(t)

A\ §()
q(t) 0 < (-3
since the previous identities yield
M _ gs p
ag =V
plt) 1

o = @ (ar —ape ) + (1 5)ved

Theorem

The density c(t, -) is convex along the characteristics:

The functional i + ||di/d.Z%|| = is geodesically convex.



Application: geodesic convexity of integral functionals

Consider a functional

where E is convex (smooth).
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Application: geodesic convexity of integral functionals

Consider a functional
du

€= qopd

£ = [ Eletd) ax,
where E is convex (smooth).

The case E(c¢) = c corresponds to the total mass of w: it is quadratic.
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Application: geodesic convexity of integral functionals

Consider a functional

&) = JE(C(X)) dx, c¢= di;d
where E is convex (smooth).
The case E(c¢) = c corresponds to the total mass of w: it is quadratic.
More generally, we set eo(c) := E(c), £1(c) := cE’(c), e2(c) := c®E”(c).
McCann condition:

1
eo(c) = (1 — H) (e1(c) —eo(c)) =0 <  r1YE(r~%) convex, nonincreasing.
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Application: geodesic convexity of integral functionals

Consider a functional

&) = JE(C(X)) dx, c¢= di;d
where E is convex (smooth).
The case E(c¢) = c corresponds to the total mass of w: it is quadratic.
More generally, we set eo(c) := E(c), £1(c) := cE’(c), e2(c) := c®E”(c).
McCann condition:
eo(c) = (1 — %) (e1(c) —eo(c)) =0 <  r1YE(r~%) convex, nonincreasing.
Convexity with respect to the Hellinger-Kakutani distance:

1
e(c) + an(c) >0 < 1+ E(r?) convex.
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Application: geodesic convexity of integral functionals

Consider a functional

&) = JE(C(X)) dx, c¢= di;d
where E is convex (smooth).
The case E(c¢) = c corresponds to the total mass of w: it is quadratic.
More generally, we set eo(c) := E(c), £1(c) := cE’(c), e2(c) := c®E”(c).
McCann condition:
e(c) = (1 — %) (e1(c) —eo(c)) =0 <  r1YE(r~%) convex, nonincreasing.
Convexity with respect to the Hellinger-Kakutani distance:

1
e(c) + ESO(C) >0 < 1~ E(r?) convex.

Theorem

& s geodesically convex w.r.t. K if and only if

Glo) = ( e2(c) — 43* (ea(c)—eo(c))  ea(c) — 3 (exlc)—eo(c))

>0, & > &
e2(c) — 3 (exlc)—eo(c)) ex(c) + Les(c) ) o
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An equivalent condition

Glo) = ( ea(c) — 42 (e1(c)—¢eo(c))  ea(c) — L (exlc)—eolc))

d >0, > &.
ez(c) — %(51(0)*50@)) e2(c) + %Sl(c) > B

Define . a
Nio.a) = (2)'E(%)

& s geodesically convex if and only if

N is jointly convex and nonincreasing w.r.t. p.



An equivalent condition

Glo) = ( ea(c) — 42 (e1(c)—¢eo(c))  ea(c) — L (exlc)—eolc))

d >0, > &.
ez(c) — %(51(0)*50@)) e2(c) + %Sl(c) > B

Theorem

Define

N(p, q) = (%)dE(q;z)

& s geodesically convex if and only if
N is jointly convex and nonincreasing w.r.t. p.
Main examples: the power functions E(c) := cP are convex if p > 1.

In dimension d = 2 also E(c) = —+/c is convex.

In dimension d = 1 all the power functions E(c) = —cP, p € [1/3, 1/2] induces convex functionals.



Bl Regularity of solutions to the Conical Hopf-Lax semigroup
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A rigorous proof: regularity of CHL solutions (l)

Conical Hopf-Lax representation formula:

. 1 cos: /5 (ly —x|)
HHG) =i o [1 B W} (eF
It is useful to introduce the reverse evolution (Villani '09)
i _ 1 cos? 5 (ly —xI)
9 —_9 - = — —
R E(x) = =P (—E)(x) szp 21—1 L 21— EN) 1} (RCHL)
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Conical Hopf-Lax representation formula:

1 cos: /5 (ly —x|)
It is useful to introduce the reverse evolution (Villani '09)
. o 1 cos? 5 (ly —xI)
R E(X) = =P (&) (x) = Slljp 2(1—1) L 21— t)z(x] - :| (RCHL)

Theorem

If& : RY — [—a, b] with—1/2 < —a < b < oo then the functions &, := 2, &y(x) are globally bounded,
Lipschitz and semiconcave &; = P &g, &1 < 1/2.

25



A rigorous proof: regularity of CHL solutions (l)

Conical Hopf-Lax representation formula:

1 cos: /5 (ly —x|)
It is useful to introduce the reverse evolution (Villani '09)
. o 1 cos? 5 (ly —xI)
R E(X) = =P (&) (x) = Slljp 2(1—1) L 21— t)z(x] - :| (RCHL)

Theorem

If& : RY — [—a, b] with—1/2 < —a < b < oo then the functions &, := 2, &y(x) are globally bounded,
Lipschitz and semiconcave &; = P &g, &1 < 1/2.

If& : RY — [—b, a] with—co < —b < a < 1/2 then the functions & := .. (x) are globally bounded,
Lipschitz and semiconvex, &, = Py (&, &1 < 1/2.

25



Regulairty of CHL (II)

Theorem (Differentiability on the contact set)
IFE =& = P1(&), &g = #1&, then &, > &, and the contact set

Ep = {x: Ei(x) = it(x)} is closed and contains supp( ).
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g, Is Lipschitz in =, and for every s, t € [0, 1] defining
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1+2(t—s)g,

the map T_. is Lipschitz, it satisfies m and

the concatenation property ‘ Te,51, 0 Tegot, = Teoots
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Regulairty of CHL (II)

Theorem (Differentiability on the contact set)
IFE =& = P1(&), &g = #1&, then &, > &, and the contact set

Ep = {x: Ei(x) = ét(x)} is closed and contains supp( ).

&q, Et are differentiable in =, with gradient g .
g, Is Lipschitz in =, and for every s, t € [0, 1] defining

Tooi(x) i=x+ m(%%)

1+2(t—s)g,
the map T_. is Lipschitz, it satisfies m and
the concatenation property ‘ Te,51, 0 Tegot, = Teoots
Setting

42, (%) = (14 2(t — 8)Es (%)) + (t — 5)2Ig, (x)P

we have| g, 1, © Tty - Qgmt; = Gtoots

26



Nonbranching and restrictions

Forevery s € (0,1) andt € [0, 1] the transport-growth pair (Ts_,+, qs—+) iS the unique solution to the
Monge formulation for the HK problem between s and .
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Nonbranching and restrictions

Theorem

Forevery s € (0,1) andt € [0, 1] the transport-growth pair (Ts_,+, qs—+) iS the unique solution to the
Monge formulation for the HK problem between s and .

In particular, if for given g, H1, s

HK (1o, 1s) = sHK (o, 11 ), HK (s, 1) = (1 — s)HK (o, 1)

then there exists a unique geodesic 1 : [0, 1] — M(R?) connecting 11y to 11 such that u(s) = L.
Ifu, < 29 thenu, < £ foreveryt € (0,1).

Ifsupp(vs) C supp(ps) then vy := (T, gs—t)+Vs IS @ geodesic.



Second order regularity of CHL (llI)

Let ®s C = the set of points of density 1 where g is differentiable.

A, := Dg, is symmetric. £ has a second order Taylor expansion in terms of g, and As. We thus can set
gs = V&, Bs = DVE, = D&, in®;.
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Second order regularity of CHL (llI)

Let ®s C = the set of points of density 1 where g is differentiable.

Theorem

A, := Dg, is symmetric. £ has a second order Taylor expansion in terms of g, and As. We thus can set
gs = V&, Bs = DVE, = D&, in®;.

Ifus < 29 then| us(Zs \ D) =0 .

T,_.. is differentiable in D, and T, (D) = D.
The maps T(t) := T ¢, B(t,:) := DT(t, ), 8(t, -) := det B(t, -) are analytic in time and satisfy the
characteristic systems of ODE.

T(t) - 4EtV£t(T(t)]
q(t) = IVE(T()Pq(t)
B(t) = —4(VE ® VE + £D%, ) o T(1)- B(1)

5(1) = ((AL)? — D6 — 4IVE —48.AE) 0 T() - 5(1).
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