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1. Modular forms

Modular forms. Highly symmetric, holomorphic functions on the
upper half plane which are ubiquitous in number theory.

The first example of a modular form was written down in 1916 by
Ramanujan:

∆(q) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn

= q − 24q2 + 252q3 − 1472q4 + ...

Properties. Weight 12, normalized, cuspidal newform for the full
modular group SL2(Z). The Fourier coefficients τ(n) are
Ramanujan’s tau function.

n 1 2 3 4 5 6 · · ·
τ(n) 1 −24 252 −1472 4830 −6048 · · ·
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Modular forms

Lehmer’s conjecture. Lehmer (1947) asked whether τ(n) ̸= 0 for
all n ≥ 1.

This is unsolved, but what can we say about the proportion of
integers n ≥ 1 such that τ(n) ̸= 0? Let

D∆ := lim
x→∞

#{n ≤ x : τ(n) ̸= 0}
x

.
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Reduction to a prime-counting problem

Idea. To bound D∆ below, express it in terms of a prime-counting
function.

Let
π∆(x) := #{p ≤ x prime | τ(p) = 0}.

Serre (1981) shows that

D∆ =
∏

p prime
τ(p)=0

(
1− 1

p + 1

)

=
∏
p≤X0

τ(p)=0

(
1− 1

p + 1

)
exp

(
−
∫ ∞

X0

π∆(x)

x(x + 1)
dx

)
.

In order to bound D∆ below, it suffices to:

Choose X0 sufficiently large.
Bound π∆(x) above, x ≥ X0.
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Bounding D∆

Very small (2 ≤ x ≤ 1019). τ(p) ̸= 0 for p ≤ 1019 (Bosman).

Small (1019 < x ≤ 1023). Computer search bounds the product for
p ≤ 1023 (Rouse–Thorner).

Pretty large (1023 < x ≤ X0). Serre, Swinnerton-Dyer, Lehmer and
others show that:

τ(p) = 0 =⇒ p lies in one of 33 residue classes mod 3488033912832000,

so the classical Brun–Titchmarsh theorem (Montgomery–Vaughan)
bounds primes in progressions.

Very large (x > X0). We need an explicit upper bound for
π∆(x) in this range.
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Our goal

Produce an explicit bound on π∆(x) for sufficiently large x ≥ X0,
and with the cutoff X0 made small.

Idea. Relate π∆(x) to algebraic number theory using connections
between modular forms and Galois representations.

We make explicit an effective Lang-Trotter bound proved in work of
Thorner-Zaman (2018).

6 / 14 Hari Iyer (joint work with Daniel Hu and Alexander Shashkov) Modular forms and an explicit Chebotarev variant of the Brun-Titchmarsh theorem Comparative Prime Number Theory Symposium



Our goal

Produce an explicit bound on π∆(x) for sufficiently large x ≥ X0,
and with the cutoff X0 made small.

Idea. Relate π∆(x) to algebraic number theory using connections
between modular forms and Galois representations.

We make explicit an effective Lang-Trotter bound proved in work of
Thorner-Zaman (2018).

6 / 14 Hari Iyer (joint work with Daniel Hu and Alexander Shashkov) Modular forms and an explicit Chebotarev variant of the Brun-Titchmarsh theorem Comparative Prime Number Theory Symposium



Our goal

Produce an explicit bound on π∆(x) for sufficiently large x ≥ X0,
and with the cutoff X0 made small.

Idea. Relate π∆(x) to algebraic number theory using connections
between modular forms and Galois representations.

We make explicit an effective Lang-Trotter bound proved in work of
Thorner-Zaman (2018).

6 / 14 Hari Iyer (joint work with Daniel Hu and Alexander Shashkov) Modular forms and an explicit Chebotarev variant of the Brun-Titchmarsh theorem Comparative Prime Number Theory Symposium



Galois representations

Let ℓ ̸= p be a prime. By Deligne (1969), there exists a
representation

ρ∆,ℓ : Gal(Q/Q) → GL2(Fℓ)

such that ρ∆,ℓ(Frobp) has characteristic polynomial

x2 − τ(p)x + p11 ∈ Fℓ[x ].

When surjective, ρ∆,ℓ factors through some finite Galois extension
Lℓ/Q:

ρ∆,ℓ : Gal(Lℓ/Q)
∼−→ GL2(Fℓ).

(By Serre and Swinnerton-Dyer (1972), ρ∆,ℓ is surjective for
ℓ > 691.)
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Reduction to a Chebotarev problem

For ℓ a prime, define

π∆(x , ℓ) := #

{
p ≤ x

∣∣∣∣ τ(p) ≡ 0 (mod ℓ),

(
τ(p)2 − 4p11

ℓ

)
= 1

}
.

By a sieving argument of Wan (1990), we can choose primes
ℓ1, . . . , ℓt such that

π∆(x) ≤
t∑

j=1

π∆(x , ℓ) + small

so it suffices to bound π∆(x , ℓ).
But τ(p) ≡ 0 (mod ℓ), τ(p)2 − 4p11 ∈ (F×

ℓ )
2 is equivalent to

tr(ρ∆,ℓ(Frobp)) = 0, tr(ρ∆,ℓ(Frobp))
2−4·det(ρ∆,ℓ(Frobp)) ∈ (F×

ℓ )
2,

i.e. Frobp ∈ C , so

π∆(x , ℓ) = #{p ≤ x | Frobp ∈ C}

where C ⊂ Gal(Lℓ/Q) is the union of conjugacy classes of traceless
matrices with distinct eigenvalues in Fℓ. This is a Chebotarev
problem!
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The Chebotarev density theorem

Let L/K a Galois extension of number fields, C ⊂ Gal(L/K ) a
conjugacy class. Let

πC (x , L/K ) := # {p ⊂ OK prime | Np ≤ x , Frobp = C} .

Chebotarev density theorem. We have

πC (x , L/K ) ∼ |C |
|G |

x

log x
as x → ∞.

Our Chebotarev variant of the Brun-Titchmarsh theorem. If
x ≫L/K X1, then

πC (x , L/K ) ≤ 2023
|C |
|G |

x

log x
.

A small range X1 is crucial for applications.
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Bounding πC (x , L/K )

Work of Murty-Murty-Saradha (1988) allows comparison of
πC (x , L/K ) with πC ′(x , L/F ) for an intermediate extension F with
abelian L/F .

For our GL2(Fℓ) extension, work of Zywina (2015) allows
comparison of πC (x , L/Q) with πC ′(x , LH/LB) for B the Borel
(upper triangular) and H the subspace of matrices with equal
eigenvalues. B/H is abelian.

Class field theory. Assume L/K is abelian. Let f = fL/K be the
Artin conductor of L/K and If/Pf the ray class group mod f. By
Artin reciprocity If/Pf ≃ Gal(L/K ) sending p to Frobp, so it suffices
to bound

πC (x , L/K ) = #{prime ideal p ∈ coset of ray class group | Np ≤ x}.
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πC (x , L/K ) = #{prime ideal p ∈ coset of ray class group | Np ≤ x}.
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Bounding πC (x , L/K )

Selberg sieve. Compares a prime ideal counting problem to an
integral ideal counting problem via inclusion-exclusion. It then
suffices to fix an integral ideal d of K and bound

#{integral ideal n ∈ coset,Nn ≤ x , d | n}.

Character orthogonality. We can filter out ideals in a given coset:

1coset =
1

[L : K ]

∑
χ∈ ̂Gal(L/K)

χ̄(coset)χ.

Summing over ideals yields the count∑
Nn≤x
d|n

1coset(n) =
1

[L : K ]

∑
χ∈ ̂Gal(L/K)

χ̄(coset)
∑
Nn≤x
d|n

χ(n).
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Bounding πC (x , L/K )

Multiply by a smooth test function (Thorner–Zaman), and apply
Mellin inversion to the Hecke L-function L(s, χ).

∑
Nn≤x
d|n

χ(n) =

∫ 2+i∞

2−i∞

L(s, χ)

Nds
x s

s
ds.

Shift the contour and bound Hecke L-functions in the critical
strip by the Phragmén–Lindelöf principle.
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Our results

Choose X0, apply Chebotarev bounds to the extensions Lℓi/Q arising
from the ℓ1, . . . , ℓt-adic representations to obtain the following.

Theorem (Hu–I–Shashkov, 2023)

If x ≥ ee
16

, then

π∆(x) ≤ (3.01× 10−10)
x(log log x)2

(log x)2
.

Feed into the integral for D∆ to obtain the following.

Theorem (Hu–I–Shashkov, 2023)

We have τ(n) ̸= 0 for 99.99999999985% of positive integers.

This is the first known positive unconditional lower bound for D∆.
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