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General mean values

@ We are interested in mean values of Dirichlet polynomials

> a(mn ™.

n<N

Primarily, since they approximate L-functions in regions where their
Dirichlet series do not converge.

@ Typically, the length of the sum N will depend on the height t. For
instance, given large t € [T,2T]

+ It Z ak(n 1/27”,

ng Tk/2

|Og< —|—It Z p—1/2 It
p<Te
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@ We consider the mean value

2T
/T

for large T, general coefficients a(n) < n® and N dependenton T.
@ Montgomery—Vaughan mean value theorem:

/:T > a(nn™"

n<N
So if N = o(T) we get an asymptotic formula. In a lot of cases, actually
expect ~ ¢T3 |a(n)|?, even for N much larger than T.

@ Terminology: If

2
dt

> a(nn~"

n<N

2
dt = (T+O(N)) > |a(n)P.

n<N

N <«T “Short Dirichlet polynomial”
N>T “Long Dirichlet polynomial.
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@ To see what'’s needed for long polys let’'s compute:

2T ] 2
/ > a(mn™"| dt
T n<N
R 2T .
=3 a(mya(n) / (m/n)~"at
m,n<N T
—— (m/n)~" T
=T lan)P+ > a(ma(n)———~——
foert fewd —ilog(m/n) |,
m,n<N
@ Worst case m=n-+1and n~= N then
1 1
log(m/n) = log(1 + 5) ~N

Can give a large contribution, a lot of care is needed.
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@ To understand long Dirichlet polynomials we need precision in
off-diagonals m — n = h # 0. In turn requires understanding the

correlation sums
> a(n)a(n+ h).
n<x
Typically need full asymptotic formula with power saving in error term.

@ For example, when a(n) = dk(n) and k = 2 these are reasonably well
understood:

> " d(n)d(n+ h) = ca(h)x(log x)? + c1(h)xlog x + co(h)x + Op(x"+).

n<x

Ingham, Estermann, Heath-Brown (6 = 5/6 uniformly in h < x5/8 via
Weil’s bound), then using spectral theory for sums of Kloosterman sums:
Deshouillers—lwaniec (¢ = 2/3 and fixed h > 1), Kusnetsov, Motohashi
(0 = 2/3 with uniformity in h).
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@ Divisor functions with k > 3 are more mysterious. It is conjectured that

> dk(n)dk(n+ h) = x Py n(log x) + Ok a(x)

n<x

for some polynomial Py s(y) of degree 2(k — 1) and 6 < 1.

@ For sixth moment of the Riemann zeta function would be applying
asymptotic with x = T3/2 and |h| < T'/2. Error term in divisor problem
translates, pretty much, directly into error term for moment problem. So in
order for the error term of the sixth moment to be <« T, we would require

0<2/3

uniformly in such h.

@ For eighth moment would have x = T2 so would require squareroot
cancellation = 1/2. For higher moments one requires cancellation
amongst the error terms when averaged over h.
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@ When a(n) is indicator function of the primes, or rather a(n) = A(n), this
is part of the famous Hardy—Littlewood k-tuples conjecture. In a strong
form this predicts

> NMA(n + h) = &(h)x + On(x'/2*)

n<x

for some constant &(h).

@ We examine two applications/occurrences of this conjecture in zeta
function theory.
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Prime Dirichlet polynomials I: Pair correlation of zeros

@ Want to understand interactions between nearby zeros at some large
height T. So consider

!
f =
og»%:'gT <27r/ log T)

for some f concentrated around 0.
@ Unfolding the inverse Fourier transform this is

/ fa) Y TR0 )da.
e 0<y,y'<T

Inner sums are now separable, but a little too erratic. Also, applying
explicit formula will give pointwise problem on Dirichlet polynomials - not
much better. Idea: Can smooth sum and make it a mean value at the
same time by introducing some averaging.
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@ Since f is concentrated can introduce extra (less concentrated) factor at

little cost: ,
Y= ’
S ol w7
o< Tt (27r/ log T)
where w(u) = 4/(4 + u?).
@ Then inner sum is

2

Tla'y
df+ -

> T =)= 2 [

0<y,y'<T

since w(u) = 2 [% 1% 7r—pz dt- So we have a smoothed, averaged

sum now on the right.
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@ Apply explicit formula: for y > 1,

y" /24t i Y2 log(2+t))
Z — 7~y Z A(nyn=* 4 + —
— e 2 7t
V 1+(y—1t) oy 1+t yl-=i

@ With y = T, applying MV the mean square of first term is

)
= ]S A = (T O(T%) Y A

n=xT« n=<T«

~aTlog T

provided 0 < o < 1. Note we are only using short sum information here.
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@ In this way, Montgomery showed that the normalised function

70" w(y — )
0<y,Y'<T
satisfies
Fla)~a+ T 2*log T
for 0 < oo < 1. Also, more trivially F is even so we understand F(«) for
—-1<a<.
@ Returning to the original sum:

v—
> fi f—logT/ a)da + -
ot (277/ log T 2

So can understand the right hand side provided supp? c[-1,1].

@ To understand local properties of zeros we would like to take f as
concentrated as possible. But then f gets wider so it is desirable to
understand F(«) outside the range [—1,1].
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@ For this we need to understand mean values of longer Dirichlet
polynomials. Assuming the Hardy—Littlewood conjecture

> AMA(n+ h) = &(h)x + Ox(x'/2)

n<x

Montgomery showed that
Fa) ~1

for 1 < a < 2 — e and conjectured that this remains true for larger a.

@ For larger « the error terms in the HL conjecture would probably have to
exhibit cancellation amongst themselves when averaged over h, similarly
to the higher moments of the zeta function.

@ In any case, Montgomery’s conjecture implies all sorts of nice
consequences for zeros.
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@ Pair correlation function and connection with random matrix theory:

b .
rffér 2. - 1 N/a (1- (SIZZU)Z)"“

Iog TSW v gIogT

@ There exist arbitrarily small normalised gaps between zeros:

fiminf =7 _

Y00 271'/ log v

In a quantitative form this implies no Siegel zeros.

@ Almost all zeros are simple.
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Prime Dirichlet polynomials II: Value distribution of
log (3 + it)

@ Selberg’s Central Limit Theorem: for fixed V € R,

o(V) = (t e [T.,2T]: log [¢(5 + it)| > V) N \/127/‘/00 X2y

\/2loglog T

as T — oo where p denotes Lebesgue measure. So the zeta function is

as large as exp(c+/loglog T) and as small as exp(—c+/loglog T) a

positive proportion of the time.
@ For the 2kth moment fT I¢(3 + it)|?*at it is values of size

(log T)* = exp(kloglog T)

that dominate, so of interest to understand CLT for large V

~ k+/loglog 7).
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@ Soundararajan (2009) gave large deviation bounds on the Riemann
hypothesis:
d(V) < exp(—(1 —€)V?)2)

for V <« /loglog T logy T. This allowed for near sharp bounds on the
2kth moment of the zeta function:

2T
/ C(3 + it)[2¥dt < T(log T)¥+e.
-
@ It is of interest to push these large deviations are far as possible since the

global maximum of the zeta function is unknown. It is conjectured to be

around exp(+/log T loglog T), which gives a huge range for which we
don’t know the distribution:

vloglog Tlog; T <« V <« «/log T
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@ Main tool for central limit theorem: The explicit formula

Xpalt

oaci +0 =3 -2 [

X /zp—a—lt

for large X.

@ In the sum over zeros X?~ 7~ <« X'/2-7 « 1 on RH, and singularities
are logarithmic so can be integrated dt.

@ Sum is localised over zeros p with imaginary part within distance 1/log X
of t. This gives around log t/log X terms on average. So on average we

have 1
. log t
log¢(3 +it) = Z /<t +O<|§§X>'
px P

@ Note we can choose X = T to give a short sum plus a bounded error.
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@ In particular, for 2kth moment choose X = T'/k so that sum over primes
is short. Then

1 2T . 2k 1 2T
?/T [log (5 + it)] dt:?/r

Z 1

~ Do )1/2

P1Pk=Pk-+1"* P2k (p1 p2k)
pis<X

(5

p<X
=ki(loglog T)¥ + - -

1 2k
ZW di -

p<X

i.e. (Complex) Gaussian.
@ So p~"look like independent random variables on unit circle.

@ Shortness of polynomials limits large deviation results. Would be nice to
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be able to compute long polynomials but don’t have access to the
correlation sums/Hardy—Littlewood k-tuples conjecture.
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Mean values of longer Dirichlet polynomials

@ In special cases can compute mean values of long Dirichlet polynomials

over primes assuming RH. Makes use of weights. Need

B ¢x : R — R bounded and of compact support in [0, X].
m The Mellin transform ¢x(s) = J5° ox(u)u®~ ' du satisfies

- XR(s)
d))((S) < W
for fixed R(s) as J(s) — oo.
m For fixed R(s) > 0, we have

1

$x(s/ log X) <« m

-
log X

@ Satisfied by the pair
$(u) = Tocucx - (1= 225), ox(8) = X*/(s%log X).

But unfortunately not by ¢x(u) = Lo<u<x and its transform $x(s)
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Theorem

Assume the Riemann hypothesis and let ¢x be as above. Then for X < T*

and k € N we have

2T
7/

and

:E:: ﬁ)1/2‘%ﬂ
p<X p<X

T /2T (SZ p1/2+:t> ( > P )k+o((0k)5k(|09 log T)*~"/2)

p<X p<X

where § denotes either the real or imaginary part and

c — {ﬁzzkk—k),' 2Kk is even,

0 2k is odd.

dt =K < > %f))zy + O((ck)*(loglog T)*~'/?)
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@ Rough idea: Recall that on average we have

. 1
|Og C(% + It) = Z /240t + O<I|(§)§)t()
PéXp

One can check the zero sum is not very sensitive to long or short X - so
this should hold regardless of whether X > T or not.

@ So take short Y = T'/k and compare the above at X and Y to give

1 1
Z pi/2+it = Z pl/2+it + O(Ilc?g?)t/)

p<X p<Y

on average i.e. we can replace a long poly with a short one on average.

@ In practice is best to avoid zeros entirely, so we use a contour integral
and shift very close to the half-line, but not past it.
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@ Proof sketch: Work with the weight

ox(U) = Tocusx - (1 — 109%), ox(8) = X°/(s% log X).

Can accept errors of O(1) throughout.
@ By Mellin inversion and RH

1 1+ico S

a
1 s>
p<pr1/2+” 57TI0g X )11 log ((3 +it + 8)X*

1/ log X+ico ds X1/2
Si
27rllogX//|ogX N log ¢(§ + it + )X +O( )

@ So for X < T* the contribution from the pole can be ignored since
t € [T,2T]. Note smoothings with more transform decay can allow for
larger X.

@ Then truncate integral at height &(s) = +1. Logarithm of zeta is < log ¢
and we have factor of 1/log X out front, so negligible contribution.
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@ Then after substitution and cleaning up

>

p<X

1 [oeX vy Nty Y
e LGRSl e

with og :%—F

log X *
@ Raising to absolute 2kth power and integrating with respect to t we need
to compute correlations

2T k 2k
/ H|09C00+It+1yj I log¢(oo — it — iy)at

Jj=k+1

for small shifts y; satisfying |j;| < 1
@ Now input short sum mean approximation

log ¢(oo + it + iy;) = ZYWJFOU)
p<
with Y = Tk say.
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@ Short polynomials and so diagonals give major contribution. Correlation
integral is given by

k —iy; 2k iy
Z Iz p 7 - ik by
e a9 ’
P11 Pk=Pk+1°"*Pak (p1 sz)
pisY

@ Mellin integrals over y; are separable so can compute to give result:

1 [looX p~1/109 X—iy/log X g1 +iy ay
(1+iy)?

~ ¢x(p)

2r J_ log X

so the sum is
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@ Smoothing very helpful here. With brutal cut-off 1,¢x and its transform
X#/s we would have difficulty truncating. Also, mean O(1) error term in
prime sum approximation would cause blow ups:

log X iy dy
O(1)-e ™ —— < loglog X.
/_IogX () 1+’y 979
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Large deviations

@ Unfortunately doesn'’t give new large deviations results for log ¢ - haven’t
input any new information! Nevertheless, can still get large deviations for
the polynomials.

@ The O(1) error term in prime sum approximation leads to poor
dependency on K in error terms:

O((ck)% (loglog T)k—1/2).

Not so useful for large deviations.

@ Can use more efficient methods to get these. For the real part, we try to
apply Soundararajan’s upper bound

1 logt
p1 /2+it + Iog Y

g (3 + i) <R Y

p<Y

more directly.
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e First modify ¢x(s) so that ¢x(iy) is positive. E.g.

1 ctico ¥\ sds
_logny __ - =
Thex - (1 IogX) 2milog X Jo_ioo (n) s?
1 cticor x\s 2 X—Sds
2rilog X Jo_ioo n ne nels
1 C+ioco

ds
- ' ein2r 1 e
“orilogX |, . T sin (2,.slogX)S2

@ Then perform same argument as before shifting to $(s) = 0:

>

p<X

log X si
p1/2+’f 277/ oox log ¢(% +/t+lo )7}/2 dy.

@ Take real parts, input upper bound and analyse the tails of each
component individually following Soundararajan’s argument fairly closely.
Extra integral over y can be dealt with easily via HSlder’s inequality.
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Theorem
Assume the Riemann hypothesis. Let ¢x be as above and let X < T*. Then

R pex ox(p)p /27" N V>

\/5loglog T

< exp(—(1 — €)V2/2) + exp(—CV+/loglog T log V).

1

@ Inthe range V < /log, T log, T have Gaussian bounds - results of this
quality were previously restricted to X < T'/v!eglog T

@ In the full range of V have e=°"!°9" - previously only available for
X < (log T)? with 6 < 2.

@ Restricted to positive values of real part. Similar result holds for
imaginary part but with no restriction on positive values.

Winston Heap Mean values of long Dirichlet polynomials 27/32



Other polynomials

@ Rough principal: Express long Dirichlet polynomial as contour integral in
efficient way. Approximate log ¢ by short Dirichlet polynomial and then
compute.

@ Can apply this to other long polynomials. Consider
> ox(p)logp

1/2
o<x p / +it

which approximates < ¢ (3 +it).
@ Look at mean square Expect this to be

|
~ ) og log T)2.

p<X
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Theorem
Assume the Riemann hypothesis. Suppose X < T* and let § = :gg)r( Then

i

ox(p)logp ¢x(p)?(log p)?
Z p1/2+:t ‘ dt ~ Z Xf

p<min(T, X)

0
4 1xsr- (log T2 / Fa)éx(e*/")2da
1

p<X

V.

@ First term is diagonal contribution and second term represents
off-diagonal contribution.

@ Montgomery’s conjecture F(a) ~ 1 gives asymptotic ~ c(log T)?
@ Without this we make use of average results: fb+1 (a)da =< 1 to give
the order < (log T)2.
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@ Similar contour integral argument then integration by parts gives

1/log X+ilog X

e / 1
lo +it+s as.
p§<;( p1/2+lt " 2ni IOgX 1/log X—ilog X QC( ) s?

@ Derivative adds extra factor of log X and we're looking for ~ ¢(log T)2. So
O(1) term in approximation log ¢ = 3, +O(1) would lead to O((log X)?) -
not sufficient.

@ Need very sharp estimates for correlation integrals.

@ Using extra contour integral argument can restrict to imaginary part of log
and then only need to consider

2T
/ S(t+ y1)S(t + y»)olt
:

where S(t) = 1Slog (4 + it) for |y;| < log T.

’ﬂ'
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@ Very precise result of Goldston (1987) gives lower order terms in

2T
S(t)?dt.
.

@ These lower order terms involve Montgomery’s function F(«).

@ Using Goldston’s arguments for precise estimates of mean square of
S(t), we can get precise estimates for our correlation integral to give the
result.
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