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General mean values

We are interested in mean values of Dirichlet polynomials∑
n6N

a(n)n−it .

Primarily, since they approximate L-functions in regions where their
Dirichlet series do not converge.
Typically, the length of the sum N will depend on the height t . For
instance, given large t ∈ [T ,2T ]

ζ( 1
2 + it)k ≈

∑
n6T k/2

dk (n)n−1/2−it ,

log ζ( 1
2 + it) ≈

∑
p6T ε

p−1/2−it .
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We consider the mean value∫ 2T

T

∣∣∣∣∑
n6N

a(n)n−it
∣∣∣∣2dt

for large T , general coefficients a(n)� nε and N dependent on T .
Montgomery–Vaughan mean value theorem:∫ 2T

T

∣∣∣∣∑
n6N

a(n)n−it
∣∣∣∣2dt = (T + O(N))

∑
n6N

|a(n)|2.

So if N = o(T ) we get an asymptotic formula. In a lot of cases, actually
expect ∼ cT

∑
|a(n)|2, even for N much larger than T .

Terminology: If

N �T “Short Dirichlet polynomial"
N �T “Long Dirichlet polynomial".
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To see what’s needed for long polys let’s compute:∫ 2T

T

∣∣∣∣∑
n6N

a(n)n−it
∣∣∣∣2dt

=
∑

m,n6N

a(m)a(n)

∫ 2T

T
(m/n)−itdt

=T
∑
n6N

|a(n)|2 +
∑
m 6=n

m,n6N

a(m)a(n)
(m/n)−it

−i log(m/n)

∣∣∣∣2T

T

Worst case m = n + 1 and n ≈ N then

log(m/n) = log(1 +
1
n

) ≈ 1
N
.

Can give a large contribution, a lot of care is needed.
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To understand long Dirichlet polynomials we need precision in
off-diagonals m − n = h 6= 0. In turn requires understanding the
correlation sums ∑

n6x

a(n)a(n + h).

Typically need full asymptotic formula with power saving in error term.

For example, when a(n) = dk (n) and k = 2 these are reasonably well
understood:∑

n6x

d(n)d(n + h) = c2(h)x(log x)2 + c1(h)x log x + c0(h)x + Oh(xθ+ε).

Ingham, Estermann, Heath-Brown (θ = 5/6 uniformly in h� x5/6 via
Weil’s bound), then using spectral theory for sums of Kloosterman sums:
Deshouillers–Iwaniec (θ = 2/3 and fixed h > 1), Kusnetsov, Motohashi
(θ = 2/3 with uniformity in h).
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Divisor functions with k > 3 are more mysterious. It is conjectured that∑
n6x

dk (n)dk (n + h) = x Pk,h(log x) + Ok,h(xθ)

for some polynomial Pk,h(y) of degree 2(k − 1) and θ < 1.
For sixth moment of the Riemann zeta function would be applying
asymptotic with x = T 3/2 and |h| 6 T 1/2. Error term in divisor problem
translates, pretty much, directly into error term for moment problem. So in
order for the error term of the sixth moment to be� T , we would require

θ 6 2/3

uniformly in such h.
For eighth moment would have x = T 2 so would require squareroot
cancellation θ = 1/2. For higher moments one requires cancellation
amongst the error terms when averaged over h.
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When a(n) is indicator function of the primes, or rather a(n) = Λ(n), this
is part of the famous Hardy–Littlewood k -tuples conjecture. In a strong
form this predicts∑

n6x

Λ(n)Λ(n + h) = G(h)x + Oh(x1/2+ε)

for some constant G(h).

We examine two applications/occurrences of this conjecture in zeta
function theory.
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Prime Dirichlet polynomials I: Pair correlation of zeros

Want to understand interactions between nearby zeros at some large
height T . So consider ∑

06γ,γ′6T

f
( γ − γ′

2π/ log T

)
for some f concentrated around 0.
Unfolding the inverse Fourier transform this is∫ ∞

−∞
f̂ (α)

∑
06γ,γ′6T

T iα(γ−γ′)dα.

Inner sums are now separable, but a little too erratic. Also, applying
explicit formula will give pointwise problem on Dirichlet polynomials - not
much better. Idea: Can smooth sum and make it a mean value at the
same time by introducing some averaging.
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Since f is concentrated can introduce extra (less concentrated) factor at
little cost: ∑

06γ,γ′6T

f
( γ − γ′

2π/ log T

)
w(γ − γ′)

where w(u) = 4/(4 + u2).
Then inner sum is∑

06γ,γ′6T

T iα(γ−γ′)w(γ − γ′) =
2
π

∫ T

0

∣∣∣∣∑
γ

T iαγ

1 + (γ − t)2

∣∣∣∣2dt + · · ·

since w(u) = 2
π

∫∞
−∞

1
1+t2

1
1+(u−t)2 dt . So we have a smoothed, averaged

sum now on the right.
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Apply explicit formula: for y > 1,

∑
γ

y iγ

1 + (γ − t)2 ≈ −y−1/2+it
∑

y6n62y

Λ(n)n−it +
y1/2

1 + t2 +
log(2 + |t |)

y1−it

With y = Tα, applying MV the mean square of first term is

1
Tα

∫ T

0

∣∣∣ ∑
n�Tα

Λ(n)n−it
∣∣∣2dt =

1
Tα

(T + O(Tα))
∑

n�Tα
Λ(n)2

∼αT log T

provided 0 < α < 1. Note we are only using short sum information here.
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In this way, Montgomery showed that the normalised function

F (α) :=
2π

T log T

∑
06γ,γ′6T

T iα(γ−γ′)w(γ − γ′)

satisfies
F (α) ∼ α + T−2α log T

for 0 < α < 1. Also, more trivially F is even so we understand F (α) for
−1 < α < 1.
Returning to the original sum:∑

06γ,γ′6T

f
( γ − γ′

2π/ log T

)
=

T
2π

log T
∫ ∞
−∞

f̂ (α)F (α)dα + · · ·

So can understand the right hand side provided supp f̂ ⊂ [−1,1].
To understand local properties of zeros we would like to take f as
concentrated as possible. But then f̂ gets wider so it is desirable to
understand F (α) outside the range [−1,1].
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For this we need to understand mean values of longer Dirichlet
polynomials. Assuming the Hardy–Littlewood conjecture∑

n6x

Λ(n)Λ(n + h) = G(h)x + Oh(x1/2+ε)

Montgomery showed that
F (α) ∼ 1

for 1 6 α 6 2− ε and conjectured that this remains true for larger α.

For larger α the error terms in the HL conjecture would probably have to
exhibit cancellation amongst themselves when averaged over h, similarly
to the higher moments of the zeta function.

In any case, Montgomery’s conjecture implies all sorts of nice
consequences for zeros.
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Pair correlation function and connection with random matrix theory:

2π
T log T

∑
2πa
log T 6γ−γ′6 2πb

log T

1 ∼
∫ b

a

(
1−

(sinπu
πu

)2)
du

There exist arbitrarily small normalised gaps between zeros:

lim inf
γ→∞

γ+ − γ
2π/ log γ

= 0

In a quantitative form this implies no Siegel zeros.

Almost all zeros are simple.
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Prime Dirichlet polynomials II: Value distribution of
log ζ(1

2 + it)

Selberg’s Central Limit Theorem: for fixed V ∈ R,

Φ(V ) :=
1
T
µ

(
t ∈ [T ,2T ] :

log |ζ( 1
2 + it)|√

1
2 log log T

> V
)
∼ 1√

2π

∫ ∞
V

e−x2/2dx

as T →∞ where µ denotes Lebesgue measure. So the zeta function is
as large as exp(c

√
log log T ) and as small as exp(−c

√
log log T ) a

positive proportion of the time.

For the 2k th moment
∫ 2T

T |ζ( 1
2 + it)|2k dt it is values of size

(log T )k = exp(k log log T )

that dominate, so of interest to understand CLT for large V
(≈ k

√
log log T ).
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Soundararajan (2009) gave large deviation bounds on the Riemann
hypothesis:

Φ(V )� exp(−(1− ε)V 2/2)

for V �
√

log log T log3 T . This allowed for near sharp bounds on the
2k th moment of the zeta function:∫ 2T

T
|ζ( 1

2 + it)|2k dt � T (log T )k2+ε.

It is of interest to push these large deviations are far as possible since the
global maximum of the zeta function is unknown. It is conjectured to be
around exp(

√
log T log log T ), which gives a huge range for which we

don’t know the distribution:√
log log T log3 T � V �

√
log T
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Main tool for central limit theorem: The explicit formula

log ζ( 1
2 + it) =

∑
p6X

1
p1/2+it −

∑
ρ

∫ ∞
1/2

Xρ−σ−it

ρ− σ − it
dσ + · · ·

for large X .
In the sum over zeros Xρ−σ−it � X 1/2−σ � 1 on RH, and singularities
are logarithmic so can be integrated dt .
Sum is localised over zeros ρ with imaginary part within distance 1/ log X
of t . This gives around log t/ log X terms on average. So on average we
have

log ζ( 1
2 + it) =

∑
p6X

1
p1/2+it + O

(
log t
log X

)
.

Note we can choose X = T ε to give a short sum plus a bounded error.
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In particular, for 2k th moment choose X = T 1/k so that sum over primes
is short. Then

1
T

∫ 2T

T
| log ζ( 1

2 + it)|2k dt =
1
T

∫ 2T

T

∣∣∣∣∑
p6X

1
p1/2+it

∣∣∣∣2k

dt + · · ·

∼
∑

p1···pk=pk+1···p2k
pj6X

1
(p1 · · · p2k )1/2

=k !

(∑
p6X

1
p

)k

+ · · ·

=k !(log log T )k + · · ·

i.e. (Complex) Gaussian.
So p−it look like independent random variables on unit circle.
Shortness of polynomials limits large deviation results. Would be nice to
be able to compute long polynomials but don’t have access to the
correlation sums/Hardy–Littlewood k -tuples conjecture.
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Mean values of longer Dirichlet polynomials
In special cases can compute mean values of long Dirichlet polynomials
over primes assuming RH. Makes use of weights. Need

φX : R→ R bounded and of compact support in [0,X ].

The Mellin transform φ̂X (s) =
∫∞

0 φX (u)us−1du satisfies

φ̂X (s)�
X<(s)

|s|2

for fixed <(s) as =(s)→∞.

For fixed <(s) > 0, we have

1
log X

φ̂X (s/ log X )� 1
1 + =(s)2 .

Satisfied by the pair

φ(u) = 10<u6X · (1− log u
log X ), φ̂X (s) = X s/(s2 log X ).

But unfortunately not by φX (u) = 10<u6X and its transform φ̂X (s) = X s/s.
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Theorem

Assume the Riemann hypothesis and let φX be as above. Then for X 6 T 4

and k ∈ N we have

1
T

∫ 2T

T

∣∣∣∣∑
p6X

φX (p)

p1/2+it

∣∣∣∣2k

dt = k !

(∑
p6X

φX (p)2

p

)k

+ O((ck)5k (log log T )k−1/2)

and

1
T

∫ 2T

T

(
F
∑
p6X

φX (p)

p1/2+it

)2k

dt = ck

(
1
2

∑
p6X

φX (p)2

p

)k

+O((ck)5k (log log T )k−1/2)

where F denotes either the real or imaginary part and

ck =

{
(2k)!
2k k! 2k is even,
0 2k is odd.
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Rough idea: Recall that on average we have

log ζ( 1
2 + it) =

∑
p6X

1
p1/2+it + O

(
log t
log X

)
.

One can check the zero sum is not very sensitive to long or short X - so
this should hold regardless of whether X � T or not.
So take short Y = T 1/k and compare the above at X and Y to give∑

p6X

1
p1/2+it =

∑
p6Y

1
p1/2+it + O

(
log t
log Y

)
on average i.e. we can replace a long poly with a short one on average.
In practice is best to avoid zeros entirely, so we use a contour integral
and shift very close to the half-line, but not past it.
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Proof sketch: Work with the weight

φX (u) = 10<u6X · (1− log u
log X ), φ̂X (s) = X s/(s2 log X ).

Can accept errors of O(1) throughout.
By Mellin inversion and RH

∑
p6X

φX (p)

p1/2+it =
1

2πi log X

∫ 1+i∞

1−i∞
log ζ( 1

2 + it + s)X s ds
s2

=
1

2πi log X

∫ 1/ log X+i∞

1/ log X−i∞
log ζ( 1

2 + it + s)X s ds
s2 + O

(X 1/2

t2

)
.

So for X 6 T 4 the contribution from the pole can be ignored since
t ∈ [T ,2T ]. Note smoothings with more transform decay can allow for
larger X .
Then truncate integral at height =(s) = ±1. Logarithm of zeta is� log t
and we have factor of 1/ log X out front, so negligible contribution.
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Then after substitution and cleaning up

∑
p6X

φX (p)

p1/2+it ∼
1

2π

∫ log X

− log X
log ζ(σ0 + it + iy

log X )e1+iy dy
(1 + iy)2 .

with σ0 = 1
2 + 1

log X .

Raising to absolute 2k th power and integrating with respect to t we need
to compute correlations∫ 2T

T

k∏
j=1

log ζ(σ0 + it + i ỹj )
2k∏

j=k+1

log ζ(σ0 − it − i ỹj )dt

for small shifts ỹj satisfying |ỹj | 6 1.
Now input short sum mean approximation

log ζ(σ0 + it + i ỹj ) =
∑
p6Y

1
pσ0+it+i ỹj

+ O(1)

with Y = T 1/k , say.
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Short polynomials and so diagonals give major contribution. Correlation
integral is given by

∑
p1···pk=pk+1···p2k

pj6Y

∏k
j=1 p−i ỹj

j ·
∏2k

j=k+1 pi ỹj
j

(p1 · · · p2k )σ0
.

Mellin integrals over yj are separable so can compute to give result:

1
2π

∫ log X

− log X
p−1/ log X−iy/ log X e1+iy dy

(1 + iy)2 ∼ φX (p)

so the sum is

∼ k !

(∑
p6Y

φX (p)2

p

)k

�
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Smoothing very helpful here. With brutal cut-off 1n6X and its transform
X s/s we would have difficulty truncating. Also, mean O(1) error term in
prime sum approximation would cause blow ups:∫ log X

− log X
O(1) · e1+iy dy

1 + iy
� log log X .
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Large deviations

Unfortunately doesn’t give new large deviations results for log ζ - haven’t
input any new information! Nevertheless, can still get large deviations for
the polynomials.
The O(1) error term in prime sum approximation leads to poor
dependency on k in error terms:

O((ck)5k (log log T )k−1/2).

Not so useful for large deviations.
Can use more efficient methods to get these. For the real part, we try to
apply Soundararajan’s upper bound

log |ζ( 1
2 + it)| 6 <

∑
p6Y

1
p1/2+it +

log t
log Y

.

more directly.
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First modify φ̂X (s) so that φ̂X (iy) is positive. E.g.

1n6X ·
(
1− log n

log X

)
=

1
2πi log X

∫ c+i∞

c−i∞

(X
n

)s ds
s2

=
1

2πi log X

∫ c+i∞

c−i∞

[(X
n

)s
− 2

ns +
X−s

ns

]
ds
s2

=
1

2πi log X

∫ c+i∞

c−i∞

1
ns sin2( 1

2i s log X )
ds
s2 .

Then perform same argument as before shifting to <(s) = 0:

∑
p6X

φX (p)

p1/2+it ∼
1

2π

∫ log X

− log X
log ζ( 1

2 + it + iy
log X )

sin2( 1
2 y)

y2 dy .

Take real parts, input upper bound and analyse the tails of each
component individually following Soundararajan’s argument fairly closely.
Extra integral over y can be dealt with easily via Hölder’s inequality.
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Theorem

Assume the Riemann hypothesis. Let φX be as above and let X 6 T 4. Then

1
T
µ

(
t ∈ [T ,2T ] :

<
∑

p6X φX (p)p−1/2−it√
1
2 log log T

> V
)

� exp(−(1− ε)V 2/2) + exp(−CV
√

log log T log V ).

In the range V �
√

log2 T log3 T have Gaussian bounds - results of this

quality were previously restricted to X 6 T 1/
√

log log T .
In the full range of V have e−cV log V - previously only available for
X 6 (log T )θ with θ 6 2.
Restricted to positive values of real part. Similar result holds for
imaginary part but with no restriction on positive values.
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Other polynomials

Rough principal: Express long Dirichlet polynomial as contour integral in
efficient way. Approximate log ζ by short Dirichlet polynomial and then
compute.
Can apply this to other long polynomials. Consider∑

p6X

φX (p) log p
p1/2+it

which approximates ζ′

ζ ( 1
2 + it).

Look at mean square. Expect this to be

≈
∑
p6X

log2 p
p
� (log T )2.
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Theorem

Assume the Riemann hypothesis. Suppose X 6 T 4 and let θ = log X
log T . Then

1
T

∫ 2T

T

∣∣∣∣∑
p6X

φX (p) log p
p1/2+it

∣∣∣∣2dt ∼
∑

p6min(T ,X)

φX (p)2(log p)2

p

+ 1X>T · (log T )2
∫ θ

1
F (α)φX (eα/θ)2dα

First term is diagonal contribution and second term represents
off-diagonal contribution.
Montgomery’s conjecture F (α) ∼ 1 gives asymptotic ∼ c(log T )2

Without this we make use of average results:
∫ b+1

b F (α)dα � 1 to give
the order � (log T )2.
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Similar contour integral argument then integration by parts gives

∑
p6X

φX (p) log p
p1/2+it ∼ 1

2πi log X

∫ 1/ log X+i log X

1/ log X−i log X
log ζ( 1

2 + it + s)
d
ds

[
X s

s2

]
ds.

Derivative adds extra factor of log X and we’re looking for ∼ c(log T )2. So
O(1) term in approximation log ζ =

∑
p +O(1) would lead to O((log X )2) -

not sufficient.
Need very sharp estimates for correlation integrals.
Using extra contour integral argument can restrict to imaginary part of log
and then only need to consider∫ 2T

T
S(t + y1)S(t + y2)dt

where S(t) = 1
π= log ζ( 1

2 + it) for |yj | � log T .
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Very precise result of Goldston (1987) gives lower order terms in∫ 2T

T
S(t)2dt .

These lower order terms involve Montgomery’s function F (α).
Using Goldston’s arguments for precise estimates of mean square of
S(t), we can get precise estimates for our correlation integral to give the
result.
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Thanks!
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