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Introduction

Let L/K be a Galois extension of number fields with group G and let C be a
conjugacy class in G . For x ≥ 2, define

π(x ; L/K ,C ) :=
∑
Np≤x

1C (φp) .

where φp is the class of Frobenius, which is a conjugacy class in G when p is
unramified.

The Chebotarev density Theorem states that

π(x ; L/K ,C ) ∼ |C |
|G |

x

log x
as x → +∞ .
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Introduction

In the particular case where L = Q(ζq), q ≥ 2. We have Gal(L/Q) ≃ (Z/qZ)×. If
a ∈ Z is coprime to q we have

π(x ; L/Q, {ā}) = #{p ≤ x : p ≡ a mod q} =: π(x ; q, a) .

Applying the Chebotarev Theorem, we recover the prime number theorem in
Arithmetic progressions :

π(x ; q, a) ∼ 1
φ(q)

x

log x
as x → +∞ .

If a, b ∈ Z are distinct modulo q, what can we say about the set

P(q; a, b) := {x ≥ 2 : π(x ; q, a) > π(x ; q, b)} ?
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Introduction

Theorem (Rubinstein-Sarnack, 1994)
Assuming GRH and LI, the set P(q; a, b) admits a logarithmic density. That is,
the limit

δ(q; a, b) := lim
X→∞

1
logX

∫ X

2
1P(q;a,b)(x)

dx

x

exists. Moreover, we have :
1 0 < δ(q; a, b) < 1
2 δ(q; a, b) > 1

2 if and only if a is a non-square modulo q and b is a square
modulo q.

Several results have extended the study of δ(q; a, b).
D. Fiorilli and G. Martin : giving an asymptotic formula to δ(q; a, b).
Y. Lamzouri : generalizing their result to more competitors δ(q; a1, · · · , ar ).

4 / 16



Introduction

Theorem (Rubinstein-Sarnack, 1994)
Assuming GRH and LI, the set P(q; a, b) admits a logarithmic density. That is,
the limit

δ(q; a, b) := lim
X→∞

1
logX

∫ X

2
1P(q;a,b)(x)

dx

x

exists. Moreover, we have :
1 0 < δ(q; a, b) < 1
2 δ(q; a, b) > 1

2 if and only if a is a non-square modulo q and b is a square
modulo q.

Several results have extended the study of δ(q; a, b).
D. Fiorilli and G. Martin : giving an asymptotic formula to δ(q; a, b).
Y. Lamzouri : generalizing their result to more competitors δ(q; a1, · · · , ar ).

4 / 16



Introduction

More generally, what can we say about the set

P(L/K ;C1,C2) =

{
x ≥ 2 :

1
|C1|

π(x ; L/K ,C1) >
1

|C2|
π(x ; L/K ,C2)

}
?

Theorem (Ng, 2000)
Assuming GRH, AC and LI, the set P(L/K ;C1,C2) admits a logarithmic density
δ(L/K ;C1,C2).

A. Bailleul, Fiorilli and Jouve, Lucile Devin.
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Unconditional Chebyshev bias

The property 0 < δ(q; a, b) < 1 is not valid in the general case of number fields.

Definition (Extreme Chebyshev bias)
We say that the Galois extension L/K has an extreme Chebyshev bias relatively to
(C1,C2) where C1, C2 are two conjugacy classes of Gal(L/K ), if up to exchanging
C1 with C2, δ(L/K ;C1,C2) exists and is equal to 1.
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Unconditional Chebyshev bias

If a ∈ G and ℓ ≥ 2 denote

rℓ(a) := #{g ∈ G : g ℓ = a} .

Theorem (Fiorilli-Jouve, 2020)
Let L/K be a Galois extension of number fields with group G , and assume that L
is a Galois extension over Q with group G+. Let a, b ∈ G with respective
conjugacy classes Ca ̸= Cb in G . Assume that a and b are conjugates in G+ and
that r2(a) < r2(b). Then, there exists A ≥ 2 such that for all x ≥ A we have

1
|Ca|

π(x ; L/K ,Ca) >
1

|Cb|
π(x ; L/K ,Cb) .

In particular, L/K has an extreme Chebyshev bias relatively to (Ca,Cb).
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Unconditional Chebyshev bias

Example
Let G := ⟨(1 2 3 4), (1 2)(3 4)⟩ ⊂ S4 =: G+ . Then G is isomorphic to the
Dihedral group D8 of order 8. If a = (1 2)(3 4) and b = (1 3)(2 4), then a has no
square roots (r2(a) = 0) and b has 2 square roots (r2(b) = 2). Also, a and b are
conjugates in G+. Thus, if L is a Galois extension over Q with group S4 and
K = LG , applying the Theorem of Fiorilli and Jouve we see that L/K has an
extreme Chebyshev bias relatively to (Ca,Cb).

Can we generalize the Theorem of Fiorilli and Jouve to more groups ?
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Unconditional Chebyshev bias

Theorem (H. 2024)
Let G be a finite group and let k be a number field. Consider the injection
G ↪→ S(G ) =: G+ (the group of permutations of G ), given by the action of G on
itself by left translation. Let L denote a Galois extension of k with group G+ and
let K = LG be the subextension of L/k fixed by G . Then, for all a, b ∈ G with the
same order, with respective conjugacy classes Ca and Cb, one of the following
cases occurs :

1 either for all x ≥ 2 :

1
|Ca|

π(x ; L/K ;Ca) =
1

|Cb|
π(x ; L/K ;Cb) ,

2 or there exists A > 0 such that, up to exchanging Ca and Cb, we have for all
x ≥ A,

1
|Ca|

π(x ; L/K ;Ca) >
1

|Cb|
π(x ; L/K ;Cb) .

Thus, L/K has an extreme Chebyshev bias relatively to (Ca,Cb)
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Unconditional Chebyshev bias

1 If G is not isomorphic to S1, S2 or S3, then there exists elements a, b ∈ G
with the same order such that Ca ̸= Cb.

2 The first case is true if and only if for all square-free ℓ ≥ 2 we have
rℓ(a) = rℓ(b).

3 When the first case hold we have δ(L/K ;Ca,Cb) = δ(L/K ;Cb,Ca) = 0 .
4 When the second case hold we have

1 ∈ {δ(L/K ;Ca,Cb), δ(L/K ;Cb,Ca)} .
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Unconditional Chebyshev bias

Theorem (H.)
Let G be a finite abelian group and let k be a number field. Consider the injection
G ↪→ S(G ) =: G+ (the group of permutations of G ), given by the action of G on
itself by left translation. Let L denote a Galois extension of k with group G+ and
let K = LG be the subextension of L/k fixed by G . Then there exists elements
a, b ∈ G with ord(a) = ord(b) such that L/K has an extreme Chebyshev bias
relative to (Ca = {a},Cb = {b}) if and only if G ≃ Z/pnZ× Z/pmZ× H where
1 ≤ n < m and H is a finite group.

Example
Let p be a prime and assume that G is isomorphic to (Z/pnZ)m. Let L/K/k as in
the previous theorem. Then, for all a, b ∈ G such that ord(a) = ord(b) and for all
x ≥ 2, we have

π(x ; L/K ; {a}) = π(x ; L/K ; {b}) .
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Elements of the proof

Consider a tour L/K/k of number fields such that L/k is Galois of group G+ and
denote G = Gal(L/K ). If t : G → C is a class function, that is for all a, g ∈ G we
have t(gag−1) = t(a), we denote

π(x ; L/K , t) :=
∑
Np≤x

t(φp),

θ(x ; L/K , t) :=
∑
Np≤x

t(φp) logNp,

ψ(x ; L/K , t) :=
∑
p,m

Npm≤x

t(φm
p ) logNp .
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Elements of the proof

We denote t+ := IndG
+

G t the induced class function by t on G+. Recall that for all
a ∈ G+ we have :

t+(a) :=
1
|G |

∑
g∈G+

g−1ag∈G

t(g−1ag)

Lemma
For all x ≥ 2 we have ψ(x ; L/K , t) = ψ(x ; L/k, t+) .

Let a, b ∈ G and denote Ca,Cb their respective conjugacy classes. We denote
ta,b = |G |

|Ca|1Ca −
|G |
|Cb|1Cb

. We note that a and b are conjugates in G+ if and only if
t+a,b = 0. Define fℓ : G → G by fℓ(g) = g ℓ.
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Elements of the proof

Lemma
With the previous notations, we have :

1 Assume there exists d ≥ 2 square-free such that rd(a) ̸= rd(b) and that for
1 ≤ ℓ < d square-free, one has (ta,b ◦ fℓ)+ = 0. Then we have :

π(x ; L/K ; ta,b) = µ(d)(rd(a)− rd(b))
x

1
d

log x
+ o

(
x

1
d

log x

)

where µ is the Möbius function.
2 Assume that for all square-free ℓ ≥ 1 we have (ta,b ◦ fℓ)+ = 0. Then, for every

x ≥ 2, we have :
π(x ; L/K ; ta,b) = 0 .

To conclude our main theorems, we consider the case where G+ ≃ S(G ). We
relate conditions (ta,b ◦ fℓ)+ = 0 to rℓ(a) = rℓ(b), then we apply the previous
Lemma.
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Elements of the proof

Démonstration.
Applying the inclusion-exclusion principle we see that

θ(x ; L/K , t) =
∑
ℓ≥1

µ(ℓ)ψ(x
1
ℓ ; L/K , t ◦ fℓ) . (1)

By the induction property for all square-free ℓ ≥ 1 such that (ta,b ◦ fℓ)+ = 0 we
have for all x ≥ 2 ψ(x

1
ℓ ; L/K , ta,b ◦ fℓ) = 0.

If d ≥ 2 is a square-free integer such that rd(a) ̸= rd(b), applying the Chebotarev
Theorem we deduce that ψ(x

1
d ; L/K ; ta;b ◦ fd) = (rd(a)− rd(b))x

1
d + o(x

1
d ) .

It is easy to see that
∑

ℓ>d µ(ℓ)ψ(x
1
ℓ ; L/K , ta,b ◦ fℓ) = o(x

1
d ).

Thus,
θ(x ; L/K , ta,b) = µ(d)(rd(a)− rd(b))x

1
d + o(x

1
d ) .

We conclude by a summation by parts.
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Thank you.
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