The influence of the structure of the Galois group on Chebyshev biases in number fields

Mounir Hayani

Introduction

Let L / K be a Galois extension of number fields with group G and let C be a conjugacy class in G. For $x \geq 2$, define

$$
\pi(x ; L / K, C):=\sum_{N \mathfrak{p} \leq x} \mathbb{1}_{C}\left(\varphi_{\mathfrak{p}}\right) .
$$

where $\varphi_{\mathfrak{p}}$ is the class of Frobenius, which is a conjugacy class in G when \mathfrak{p} is unramified.

Introduction

Let L / K be a Galois extension of number fields with group G and let C be a conjugacy class in G. For $x \geq 2$, define

$$
\pi(x ; L / K, C):=\sum_{N \mathfrak{p} \leq x} \mathbb{1}_{C}\left(\varphi_{\mathfrak{p}}\right) .
$$

where $\varphi_{\mathfrak{p}}$ is the class of Frobenius, which is a conjugacy class in G when \mathfrak{p} is unramified.
The Chebotarev density Theorem states that

$$
\pi(x ; L / K, C) \sim \frac{|C|}{|G|} \frac{x}{\log x} \text { as } x \rightarrow+\infty
$$

Introduction

In the particular case where $L=\mathbb{Q}\left(\zeta_{q}\right), q \geq 2$. We have $\operatorname{Gal}(L / \mathbb{Q}) \simeq(\mathbb{Z} / q \mathbb{Z})^{\times}$. If $a \in \mathbb{Z}$ is coprime to q we have

$$
\pi(x ; L / \mathbb{Q},\{\bar{a}\})=\#\{p \leq x: p \equiv a \bmod q\}=: \pi(x ; q, a) .
$$

Introduction

In the particular case where $L=\mathbb{Q}\left(\zeta_{q}\right), q \geq 2$. We have $\operatorname{Gal}(L / \mathbb{Q}) \simeq(\mathbb{Z} / q \mathbb{Z})^{\times}$. If $a \in \mathbb{Z}$ is coprime to q we have

$$
\pi(x ; L / \mathbb{Q},\{\bar{a}\})=\#\{p \leq x: p \equiv a \bmod q\}=: \pi(x ; q, a) .
$$

Applying the Chebotarev Theorem, we recover the prime number theorem in Arithmetic progressions :

$$
\pi(x ; q, a) \sim \frac{1}{\varphi(q)} \frac{x}{\log x} \text { as } x \rightarrow+\infty .
$$

Introduction

In the particular case where $L=\mathbb{Q}\left(\zeta_{q}\right), q \geq 2$. We have $\operatorname{Gal}(L / \mathbb{Q}) \simeq(\mathbb{Z} / q \mathbb{Z})^{\times}$. If $a \in \mathbb{Z}$ is coprime to q we have

$$
\pi(x ; L / \mathbb{Q},\{\bar{a}\})=\#\{p \leq x: p \equiv a \bmod q\}=: \pi(x ; q, a) .
$$

Applying the Chebotarev Theorem, we recover the prime number theorem in Arithmetic progressions :

$$
\pi(x ; q, a) \sim \frac{1}{\varphi(q)} \frac{x}{\log x} \text { as } x \rightarrow+\infty .
$$

If $a, b \in \mathbb{Z}$ are distinct modulo q, what can we say about the set

$$
\mathcal{P}(q ; a, b):=\{x \geq 2: \pi(x ; q, a)>\pi(x ; q, b)\} ?
$$

Introduction

Theorem (Rubinstein-Sarnack, 1994)

Assuming GRH and $L I$, the set $\mathcal{P}(q ; a, b)$ admits a logarithmic density. That is, the limit

$$
\delta(q ; a, b):=\lim _{x \rightarrow \infty} \frac{1}{\log X} \int_{2}^{X} \mathbb{1}_{\mathcal{P}(q ; a, b)}(x) \frac{d x}{x}
$$

exists. Moreover, we have :
(1) $0<\delta(q ; a, b)<1$
(2) $\delta(q ; a, b)>\frac{1}{2}$ if and only if a is a non-square modulo q and b is a square modulo q.

Introduction

Theorem (Rubinstein-Sarnack, 1994)

Assuming GRH and $L I$, the set $\mathcal{P}(q ; a, b)$ admits a logarithmic density. That is, the limit

$$
\delta(q ; a, b):=\lim _{x \rightarrow \infty} \frac{1}{\log X} \int_{2}^{X} \mathbb{1}_{\mathcal{P}(q ; a, b)}(x) \frac{d x}{x}
$$

exists. Moreover, we have :
(1) $0<\delta(q ; a, b)<1$
(2) $\delta(q ; a, b)>\frac{1}{2}$ if and only if a is a non-square modulo q and b is a square modulo q.

Several results have extended the study of $\delta(q ; a, b)$.
D. Fiorilli and G. Martin : giving an asymptotic formula to $\delta(q ; a, b)$.
Y. Lamzouri : generalizing their result to more competitors $\delta\left(q ; a_{1}, \cdots, a_{r}\right)$.

Introduction

More generally, what can we say about the set

$$
\mathcal{P}\left(L / K ; C_{1}, C_{2}\right)=\left\{x \geq 2: \frac{1}{\left|C_{1}\right|} \pi\left(x ; L / K, C_{1}\right)>\frac{1}{\left|C_{2}\right|} \pi\left(x ; L / K, C_{2}\right)\right\} ?
$$

Introduction

More generally, what can we say about the set

$$
\mathcal{P}\left(L / K ; C_{1}, C_{2}\right)=\left\{x \geq 2: \frac{1}{\left|C_{1}\right|} \pi\left(x ; L / K, C_{1}\right)>\frac{1}{\left|C_{2}\right|} \pi\left(x ; L / K, C_{2}\right)\right\} ?
$$

Theorem (Ng, 2000)

Assuming GRH, AC and $L I$, the set $\mathcal{P}\left(L / K ; C_{1}, C_{2}\right)$ admits a logarithmic density $\delta\left(L / K ; C_{1}, C_{2}\right)$.

Introduction

More generally, what can we say about the set

$$
\mathcal{P}\left(L / K ; C_{1}, C_{2}\right)=\left\{x \geq 2: \frac{1}{\left|C_{1}\right|} \pi\left(x ; L / K, C_{1}\right)>\frac{1}{\left|C_{2}\right|} \pi\left(x ; L / K, C_{2}\right)\right\} ?
$$

Theorem (Ng, 2000)

Assuming GRH, AC and $L I$, the set $\mathcal{P}\left(L / K ; C_{1}, C_{2}\right)$ admits a logarithmic density $\delta\left(L / K ; C_{1}, C_{2}\right)$.
A. Bailleul, Fiorilli and Jouve, Lucile Devin.

Unconditional Chebyshev bias

The property $0<\delta(q ; a, b)<1$ is not valid in the general case of number fields.

Definition (Extreme Chebyshev bias)

We say that the Galois extension L / K has an extreme Chebyshev bias relatively to (C_{1}, C_{2}) where C_{1}, C_{2} are two conjugacy classes of $\operatorname{Gal}(L / K)$, if up to exchanging C_{1} with $C_{2}, \delta\left(L / K ; C_{1}, C_{2}\right)$ exists and is equal to 1 .

Unconditional Chebyshev bias

If $a \in G$ and $\ell \geq 2$ denote

$$
r_{\ell}(a):=\#\left\{g \in G: g^{\ell}=a\right\}
$$

Theorem (Fiorilli-Jouve, 2020)

Let L / K be a Galois extension of number fields with group G, and assume that L is a Galois extension over \mathbb{Q} with group G^{+}. Let $a, b \in G$ with respective conjugacy classes $C_{a} \neq C_{b}$ in G. Assume that a and b are conjugates in G^{+}and that $r_{2}(a)<r_{2}(b)$. Then, there exists $A \geq 2$ such that for all $x \geq A$ we have

$$
\frac{1}{\left|C_{a}\right|} \pi\left(x ; L / K, C_{a}\right)>\frac{1}{\left|C_{b}\right|} \pi\left(x ; L / K, C_{b}\right) .
$$

In particular, L / K has an extreme Chebyshev bias relatively to $\left(C_{a}, C_{b}\right)$.

Unconditional Chebyshev bias

Example

Let $G:=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle \subset \mathfrak{S}_{4}=: G^{+}$. Then G is isomorphic to the Dihedral group D_{8} of order 8 . If $a=(12)(34)$ and $b=(13)(24)$, then a has no square roots $\left(r_{2}(a)=0\right)$ and b has 2 square roots $\left(r_{2}(b)=2\right)$. Also, a and b are conjugates in G^{+}. Thus, if L is a Galois extension over \mathbb{Q} with group \mathfrak{S}_{4} and $K=L^{G}$, applying the Theorem of Fiorilli and Jouve we see that L / K has an extreme Chebyshev bias relatively to $\left(C_{a}, C_{b}\right)$.

Unconditional Chebyshev bias

Example

Let $G:=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle \subset \mathfrak{S}_{4}=: G^{+}$. Then G is isomorphic to the Dihedral group D_{8} of order 8 . If $a=(12)(34)$ and $b=(13)(24)$, then a has no square roots $\left(r_{2}(a)=0\right)$ and b has 2 square roots $\left(r_{2}(b)=2\right)$. Also, a and b are conjugates in G^{+}. Thus, if L is a Galois extension over \mathbb{Q} with group \mathfrak{S}_{4} and $K=L^{G}$, applying the Theorem of Fiorilli and Jouve we see that L / K has an extreme Chebyshev bias relatively to $\left(C_{a}, C_{b}\right)$.

Can we generalize the Theorem of Fiorilli and Jouve to more groups?

Unconditional Chebyshev bias

Theorem (H. 2024)

Let G be a finite group and let k be a number field. Consider the injection $G \hookrightarrow \mathfrak{S}(G)=$: G^{+}(the group of permutations of G), given by the action of G on itself by left translation. Let L denote a Galois extension of k with group G^{+}and let $K=L^{G}$ be the subextension of L / k fixed by G. Then, for all $a, b \in G$ with the same order, with respective conjugacy classes C_{a} and C_{b}, one of the following cases occurs :
(1) either for all $x \geq 2$:

$$
\frac{1}{\left|C_{a}\right|} \pi\left(x ; L / K ; C_{a}\right)=\frac{1}{\left|C_{b}\right|} \pi\left(x ; L / K ; C_{b}\right),
$$

(2) or there exists $A>0$ such that, up to exchanging C_{a} and C_{b}, we have for all $x \geq A$,

$$
\frac{1}{\left|C_{a}\right|} \pi\left(x ; L / K ; C_{a}\right)>\frac{1}{\left|C_{b}\right|} \pi\left(x ; L / K ; C_{b}\right) .
$$

Thus, L / K has an extreme Chebyshev bias relatively to $\left(C_{a}, C_{b}\right)$

Unconditional Chebyshev bias

(1) If G is not isomorphic to $\mathfrak{S}_{1}, \mathfrak{S}_{2}$ or \mathfrak{S}_{3}, then there exists elements $a, b \in G$ with the same order such that $C_{a} \neq C_{b}$.

Unconditional Chebyshev bias

(1) If G is not isomorphic to $\mathfrak{S}_{1}, \mathfrak{S}_{2}$ or \mathfrak{S}_{3}, then there exists elements $a, b \in G$ with the same order such that $C_{a} \neq C_{b}$.
(2) The first case is true if and only if for all square-free $\ell \geq 2$ we have $r_{\ell}(a)=r_{\ell}(b)$.

Unconditional Chebyshev bias

(1) If G is not isomorphic to $\mathfrak{S}_{1}, \mathfrak{S}_{2}$ or \mathfrak{S}_{3}, then there exists elements $a, b \in G$ with the same order such that $C_{a} \neq C_{b}$.
(2) The first case is true if and only if for all square-free $\ell \geq 2$ we have $r_{\ell}(a)=r_{\ell}(b)$.
(0) When the first case hold we have $\delta\left(L / K ; C_{a}, C_{b}\right)=\delta\left(L / K ; C_{b}, C_{a}\right)=0$.

Unconditional Chebyshev bias

(1) If G is not isomorphic to $\mathfrak{S}_{1}, \mathfrak{S}_{2}$ or \mathfrak{S}_{3}, then there exists elements $a, b \in G$ with the same order such that $C_{a} \neq C_{b}$.
(2) The first case is true if and only if for all square-free $\ell \geq 2$ we have $r_{\ell}(a)=r_{\ell}(b)$.
(3) When the first case hold we have $\delta\left(L / K ; C_{a}, C_{b}\right)=\delta\left(L / K ; C_{b}, C_{a}\right)=0$.
(- When the second case hold we have

$$
1 \in\left\{\delta\left(L / K ; C_{a}, C_{b}\right), \delta\left(L / K ; C_{b}, C_{a}\right)\right\}
$$

Unconditional Chebyshev bias

Theorem (H.)

Let G be a finite abelian group and let k be a number field. Consider the injection $G \hookrightarrow \mathfrak{S}(G)=$: G^{+}(the group of permutations of G), given by the action of G on itself by left translation. Let L denote a Galois extension of k with group G^{+}and let $K=L^{G}$ be the subextension of L / k fixed by G. Then there exists elements $a, b \in G$ with $\operatorname{ord}(a)=\operatorname{ord}(b)$ such that L / K has an extreme Chebyshev bias relative to $\left(C_{a}=\{a\}, C_{b}=\{b\}\right)$ if and only if $G \simeq \mathbb{Z} / p^{n} \mathbb{Z} \times \mathbb{Z} / p^{m} \mathbb{Z} \times H$ where $1 \leq n<m$ and H is a finite group.

Unconditional Chebyshev bias

Theorem (H.)

Let G be a finite abelian group and let k be a number field. Consider the injection $G \hookrightarrow \mathfrak{S}(G)=$: G^{+}(the group of permutations of G), given by the action of G on itself by left translation. Let L denote a Galois extension of k with group G^{+}and let $K=L^{G}$ be the subextension of L / k fixed by G. Then there exists elements $a, b \in G$ with $\operatorname{ord}(a)=\operatorname{ord}(b)$ such that L / K has an extreme Chebyshev bias relative to $\left(C_{a}=\{a\}, C_{b}=\{b\}\right)$ if and only if $G \simeq \mathbb{Z} / p^{n} \mathbb{Z} \times \mathbb{Z} / p^{m} \mathbb{Z} \times H$ where $1 \leq n<m$ and H is a finite group.

Example

Let p be a prime and assume that G is isomorphic to $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{m}$. Let $L / K / k$ as in the previous theorem. Then, for all $a, b \in G$ such that $\operatorname{ord}(a)=\operatorname{ord}(b)$ and for all $x \geq 2$, we have

$$
\pi(x ; L / K ;\{a\})=\pi(x ; L / K ;\{b\})
$$

Elements of the proof

Consider a tour $L / K / k$ of number fields such that L / k is Galois of group G^{+}and denote $G=\operatorname{Gal}(L / K)$. If $t: G \rightarrow \mathbb{C}$ is a class function, that is for all $a, g \in G$ we have $t\left(\mathrm{gag}^{-1}\right)=t(a)$, we denote

$$
\begin{aligned}
\pi(x ; L / K, t) & :=\sum_{N \mathfrak{p} \leq x} t\left(\varphi_{\mathfrak{p}}\right), \\
\theta(x ; L / K, t) & :=\sum_{N \mathfrak{p} \leq x} t\left(\varphi_{\mathfrak{p}}\right) \log N \mathfrak{p}, \\
\psi(x ; L / K, t) & :=\sum_{\substack{\mathfrak{p}, m \\
N \mathfrak{p}^{m} \leq x}} t\left(\varphi_{\mathfrak{p}}^{m}\right) \log N \mathfrak{p} .
\end{aligned}
$$

Elements of the proof

We denote $t^{+}:=\operatorname{Ind}_{G}^{G^{+}} t$ the induced class function by t on G^{+}. Recall that for all $a \in G^{+}$we have :

$$
t^{+}(a):=\frac{1}{|G|} \sum_{\substack{g \in G^{+} \\ g^{-1} a g \in G}} t\left(g^{-1} a g\right)
$$

Elements of the proof

We denote $t^{+}:=\operatorname{Ind}_{G}^{G^{+}} t$ the induced class function by t on G^{+}. Recall that for all $a \in G^{+}$we have :

$$
t^{+}(a):=\frac{1}{|G|} \sum_{\substack{g \in G^{+} \\ g^{-1} a g \in G}} t\left(g^{-1} a g\right)
$$

Lemma

For all $x \geq 2$ we have $\psi(x ; L / K, t)=\psi\left(x ; L / k, t^{+}\right)$.

Elements of the proof

We denote $t^{+}:=\operatorname{Ind} G^{G^{+}} t$ the induced class function by t on G^{+}. Recall that for all $a \in G^{+}$we have :

$$
t^{+}(a):=\frac{1}{|G|} \sum_{\substack{g \in G^{+} \\ g^{-1} a g \in G}} t\left(g^{-1} a g\right)
$$

Lemma

For all $x \geq 2$ we have $\psi(x ; L / K, t)=\psi\left(x ; L / k, t^{+}\right)$.
Let $a, b \in G$ and denote C_{a}, C_{b} their respective conjugacy classes. We denote $t_{a, b}=\frac{|G|}{\left|C_{a}\right|} \mathbb{1}_{C_{a}}-\frac{|G|}{\left|C_{b}\right|} \mathbb{1}_{C_{b}}$. We note that a and b are conjugates in G^{+}if and only if $t_{a, b}^{+}=0$. Define $f_{\ell}: G \rightarrow G$ by $f_{\ell}(g)=g^{\ell}$.

Elements of the proof

Lemma

With the previous notations, we have:
(1) Assume there exists $d \geq 2$ square-free such that $r_{d}(a) \neq r_{d}(b)$ and that for $1 \leq \ell<d$ square-free, one has $\left(t_{a, b} \circ f_{\ell}\right)^{+}=0$. Then we have :

$$
\pi\left(x ; L / K ; t_{a, b}\right)=\mu(d)\left(r_{d}(a)-r_{d}(b)\right) \frac{x^{\frac{1}{d}}}{\log x}+o\left(\frac{x^{\frac{1}{d}}}{\log x}\right)
$$

where μ is the Möbius function.
(2) Assume that for all square-free $\ell \geq 1$ we have $\left(t_{a, b} \circ f_{\ell}\right)^{+}=0$. Then, for every $x \geq 2$, we have :

$$
\pi\left(x ; L / K ; t_{a, b}\right)=0 .
$$

Elements of the proof

Lemma

With the previous notations, we have :
(1) Assume there exists $d \geq 2$ square-free such that $r_{d}(a) \neq r_{d}(b)$ and that for $1 \leq \ell<d$ square-free, one has $\left(t_{a, b} \circ f_{\ell}\right)^{+}=0$. Then we have :

$$
\pi\left(x ; L / K ; t_{a, b}\right)=\mu(d)\left(r_{d}(a)-r_{d}(b)\right) \frac{x^{\frac{1}{d}}}{\log x}+o\left(\frac{x^{\frac{1}{d}}}{\log x}\right)
$$

where μ is the Möbius function.
(2) Assume that for all square-free $\ell \geq 1$ we have $\left(t_{a, b} \circ f_{\ell}\right)^{+}=0$. Then, for every $x \geq 2$, we have :

$$
\pi\left(x ; L / K ; t_{a, b}\right)=0 .
$$

To conclude our main theorems, we consider the case where $G^{+} \simeq \mathfrak{S}(G)$. We relate conditions $\left(t_{a, b} \circ f_{\ell}\right)^{+}=0$ to $r_{\ell}(a)=r_{\ell}(b)$, then we apply the previous Lemma.

Elements of the proof

Démonstration.

Applying the inclusion-exclusion principle we see that

$$
\begin{equation*}
\theta(x ; L / K, t)=\sum_{\ell \geq 1} \mu(\ell) \psi\left(x^{\frac{1}{\ell}} ; L / K, t \circ f_{\ell}\right) \tag{1}
\end{equation*}
$$

Elements of the proof

Démonstration.

Applying the inclusion-exclusion principle we see that

$$
\begin{equation*}
\theta(x ; L / K, t)=\sum_{\ell \geq 1} \mu(\ell) \psi\left(x^{\frac{1}{\ell}} ; L / K, t \circ f_{\ell}\right) \tag{1}
\end{equation*}
$$

By the induction property for all square-free $\ell \geq 1$ such that $\left(t_{a, b} \circ f_{\ell}\right)^{+}=0$ we have for all $x \geq 2 \psi\left(x^{\frac{1}{\ell}} ; L / K, t_{a, b} \circ f_{\ell}\right)=0$.

Elements of the proof

Démonstration.

Applying the inclusion-exclusion principle we see that

$$
\begin{equation*}
\theta(x ; L / K, t)=\sum_{\ell \geq 1} \mu(\ell) \psi\left(x^{\frac{1}{\ell}} ; L / K, t \circ f_{\ell}\right) . \tag{1}
\end{equation*}
$$

By the induction property for all square-free $\ell \geq 1$ such that $\left(t_{a, b} \circ f_{\ell}\right)^{+}=0$ we have for all $x \geq 2 \psi\left(x^{\frac{1}{\ell}} ; L / K, t_{a, b} \circ f_{\ell}\right)=0$.
If $d \geq 2$ is a square-free integer such that $r_{d}(a) \neq r_{d}(b)$, applying the Chebotarev Theorem we deduce that $\psi\left(x^{\frac{1}{d}} ; L / K ; t_{a ; b} \circ f_{d}\right)=\left(r_{d}(a)-r_{d}(b)\right) x^{\frac{1}{d}}+o\left(x^{\frac{1}{d}}\right)$.

Elements of the proof

Démonstration.

Applying the inclusion-exclusion principle we see that

$$
\begin{equation*}
\theta(x ; L / K, t)=\sum_{\ell \geq 1} \mu(\ell) \psi\left(x^{\frac{1}{\ell}} ; L / K, t \circ f_{\ell}\right) . \tag{1}
\end{equation*}
$$

By the induction property for all square-free $\ell \geq 1$ such that $\left(t_{a, b} \circ f_{\ell}\right)^{+}=0$ we have for all $x \geq 2 \psi\left(x^{\frac{1}{l}} ; L / K, t_{a, b} \circ f_{\ell}\right)=0$.
If $d \geq 2$ is a square-free integer such that $r_{d}(a) \neq r_{d}(b)$, applying the Chebotarev Theorem we deduce that $\psi\left(x^{\frac{1}{d}} ; L / K ; t_{a ; b} \circ f_{d}\right)=\left(r_{d}(a)-r_{d}(b)\right) x^{\frac{1}{d}}+o\left(x^{\frac{1}{d}}\right)$. It is easy to see that $\sum_{\ell>d} \mu(\ell) \psi\left(x^{\frac{1}{\ell}} ; L / K, t_{a, b} \circ f_{\ell}\right)=o\left(x^{\frac{1}{d}}\right)$.
Thus,

$$
\theta\left(x ; L / K, t_{a, b}\right)=\mu(d)\left(r_{d}(a)-r_{d}(b)\right) x^{\frac{1}{d}}+o\left(x^{\frac{1}{d}}\right)
$$

We conclude by a summation by parts.

Thank you.

