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Introduction

Let L/K be a Galois extension of number fields with group G and let C be a
conjugacy class in G. For x > 2, define

(6 L/K,C) = 3 Le(ioy).

Np<x

where ¢, is the class of Frobenius, which is a conjugacy class in G when p is
unramified.
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Introduction

Let L/K be a Galois extension of number fields with group G and let C be a
conjugacy class in G. For x > 2, define

(6 L/K,C) = 3 Le(ioy).

Np<x

where ¢, is the class of Frobenius, which is a conjugacy class in G when p is
unramified.
The Chebotarev density Theorem states that

19

W(X,L/K,C)N@@ as x — +o00.
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Introduction

In the particular case where L = Q(({g4), ¢ > 2. We have Gal(L/Q) ~ (Z/qZ)*. If
a € Z is coprime to g we have

m(x; L/Q,{3}) =#{p<x : p=amod q} =:7(x;q,a).
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Applying the Chebotarev Theorem, we recover the prime number theorem in
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Introduction

In the particular case where L = Q(({g4), ¢ > 2. We have Gal(L/Q) ~ (Z/qZ)*. If
a € Z is coprime to g we have

m(x; L/Q,{3}) =#{p<x : p=amod q} =:7(x;q,a).

Applying the Chebotarev Theorem, we recover the prime number theorem in
Arithmetic progressions :

(x:q,a) ~ —— =~ g
w(x;q,a) ~ ———— as x 00.
©(q) log x

If a, b € Z are distinct modulo g, what can we say about the set

P(g;a,b) :={x>2 : w(x;q,a) > w(x;q,b)}?
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Introduction

Theorem (Rubinstein-Sarnack, 1994)

Assuming GRH and LI, the set P(q; a, b) admits a logarithmic density. That is,
the limit

d(q; a, b) := I|m dX

IogX Plaia)(X
exists. Moreover, we have :
Q 0<d(g;a,b) <1

Q J(q;a,b) > % if and only if a is a non-square modulo q and b is a square
modulo q.




Introduction

Theorem (Rubinstein-Sarnack, 1994)

Assuming GRH and LI, the set P(q; a, b) admits a logarithmic density. That is,
the limit
dx

0(q; a, b) := I|m IogX P(aia,b) (X

exists. Moreover, we have :
Q@ 0<d(g;a,b) <1

Q J(q;a,b) > % if and only if a is a non-square modulo q and b is a square
modulo q.

Several results have extended the study of §(q; a, b).
D. Fiorilli and G. Martin : giving an asymptotic formula to 4(gq; a, b).
Y. Lamzouri : generalizing their result to more competitors §(q; a, - - , a,).



Introduction

More generally, what can we say about the set

P(L/K; G, G) = {x >2 ﬁw(x; L/K,C) > ﬁﬁ(x; L/K, Cg)} ?
1 2



Introduction

More generally, what can we say about the set

1 1
P(L/K; C17C2):{x22 : WF(X;L/K, C1)>|C7T(X;L/K,C2)}?
1 2

Theorem (Ng, 2000)

Assuming GRH, AC and LI, the set P(L/K; Ci, G;) admits a logarithmic density
(5(L/K, Cl; C2)
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More generally, what can we say about the set

1 1
P(L/K; C17C2):{x22 : WF(X;L/K, C1)>|C7T(X;L/K,C2)}?
1 2

Theorem (Ng, 2000)

Assuming GRH, AC and LI, the set P(L/K; Ci, G;) admits a logarithmic density
(5(L/K, Cl; C2)

A. Bailleul, Fiorilli and Jouve, Lucile Devin.



Unconditional Chebyshev bias

The property 0 < (g; a, b) < 1 is not valid in the general case of number fields.

Definition (Extreme Chebyshev bias)

We say that the Galois extension L/K has an extreme Chebyshev bias relatively to
(Ci, G)) where Gy, G, are two conjugacy classes of Gal(L/K), if up to exchanging
G with G, 0(L/K; G, G3) exists and is equal to 1.
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Unconditional Chebyshev bias

If a€ G and ¢ > 2 denote

r(a):=#{ge G : g'=a}.

Theorem (Fiorilli-Jouve, 2020)

Let L/K be a Galois extension of number fields with group G, and assume that L
is a Galois extension over Q with group G*. Let a, b € G with respective
conjugacy classes C, # Cp, in G. Assume that a and b are conjugates in Gt and
that ra(a) < ra(b). Then, there exists A > 2 such that for all x > A we have

1
| Cp|

1
(x; L/K, C) >

Cl m(x; L/K, Cp).

In particular, L/K has an extreme Chebyshev bias relatively to (C,, Cp).




Unconditional Chebyshev bias

Let G:=((1234),(12)(34)) CSs4=: G" . Then G is isomorphic to the
Dihedral group Dg of order 8. If a = (1 2)(3 4) and b = (1 3)(2 4), then a has no
square roots (r2(a) = 0) and b has 2 square roots (r2(b) = 2). Also, a and b are
conjugates in GT. Thus, if L is a Galois extension over Q with group &, and

K = L®, applying the Theorem of Fiorilli and Jouve we see that L/K has an
extreme Chebyshev bias relatively to (C,, Gp).
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Unconditional Chebyshev bias

Let G:=((1234),(12)(34)) CSs4=: G" . Then G is isomorphic to the
Dihedral group Dg of order 8. If a = (1 2)(3 4) and b = (1 3)(2 4), then a has no
square roots (r2(a) = 0) and b has 2 square roots (r2(b) = 2). Also, a and b are
conjugates in GT. Thus, if L is a Galois extension over Q with group &, and

K = L®, applying the Theorem of Fiorilli and Jouve we see that L/K has an
extreme Chebyshev bias relatively to (C,, Gp).

Can we generalize the Theorem of Fiorilli and Jouve to more groups?
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Unconditional Chebyshev bias

Theorem (H. 2024)

Let G be a finite group and let k be a number field. Consider the injection

G < &(G) =: G (the group of permutations of G), given by the action of G on
itself by left translation. Let L denote a Galois extension of k with group G* and
let K = L be the subextension of L/k fixed by G. Then, for all a,b € G with the
same order, with respective conjugacy classes C, and Cp, one of the following
cases occurs :

Q either for all x > 2 :

|c1| m(x; L/K; C;) = |C| 7(x; L/K; C),

@ or there exists A > 0 such that, up to exchanging C, and Cp,, we have for all
x> A,

7(x; L/K; Gy) > ——m(x; L/K; Cp) .

|C | |C |
Thus, L/K has an extreme Chebyshev bias relatively to (C,, Cp)
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Unconditional Chebyshev bias

@ If G is not isomorphic to &1, &, or &3, then there exists elements a,b € G
with the same order such that C, # Cp.
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@ If G is not isomorphic to &1, &, or &3, then there exists elements a,b € G
with the same order such that C, # Cp.

© The first case is true if and only if for all square-free £ > 2 we have
re(a) = re(b).
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Unconditional Chebyshev bias

@ If G is not isomorphic to &1, &, or &3, then there exists elements a,b € G
with the same order such that C, # Cp.

© The first case is true if and only if for all square-free £ > 2 we have
re(a) = re(b).
@ When the first case hold we have §(L/K; C,, Cp) = 0(L/K; Cp, C;) = 0.

@ When the second case hold we have

1€ {8(L/K; Cy, Cb), 5(L/K; Co, Cu)} .

10 / 16



Unconditional Chebyshev bias

Theorem (H.)

Let G be a finite abelian group and let k be a number field. Consider the injection
G < &(G) =: GT (the group of permutations of G), given by the action of G on
itself by left translation. Let L denote a Galois extension of k with group G and
let K = L® be the subextension of L/k fixed by G. Then there exists elements

a, b € G with ord(a) = ord(b) such that L/K has an extreme Chebyshev bias
relative to (C, = {a}, Cp, = {b}) if and only if G ~Z/p"Z x Z/p™Z x H where
1< n< mandH is a finite group.




Unconditional Chebyshev bias

Let G be a finite abelian group and let k be a number field. Consider the injection
G < &(G) =: GT (the group of permutations of G), given by the action of G on
itself by left translation. Let L denote a Galois extension of k with group G and
let K = L® be the subextension of L/k fixed by G. Then there exists elements

a, b € G with ord(a) = ord(b) such that L/K has an extreme Chebyshev bias
relative to (C, = {a}, Cp, = {b}) if and only if G ~Z/p"Z x Z/p™Z x H where
1< n< mandH is a finite group.

Let p be a prime and assume that G is isomorphic to (Z/p"Z)™. Let L/K/k as in
the previous theorem. Then, for all a, b € G such that ord(a) = ord(b) and for all
x > 2, we have

w(x; L/K;{a}) = n(x; L/K; {b}).

.




Elements of the proof

Consider a tour L/K /k of number fields such that L/k is Galois of group G* and
denote G = Gal(L/K). If t: G — C is a class function, that is for all a,g € G we
have t(gag—!) = t(a), we denote

w(x; L/K,t) = Z t(op)s

Np<x

0(x; L/K,t) == t(pp) log Np,

Np<x
Y(x; L/K, t) = Z t(¢y') log Np.

p,m
Np™<x
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Elements of the proof

:
We denote t* :=Indg t the induced class function by t on G*. Recall that for all
a€ G" we have :

t'(a):= = D tlg ‘ag)
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Elements of the proof

:
We denote t* :=Indg t the induced class function by t on G*. Recall that for all
a€ G" we have :

t'(a):= = D tlg ‘ag)

For all x > 2 we have (x; L/K, t) = ¢(x; L/k, t).
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Elements of the proof

:
We denote t* :=Indg t the induced class function by t on G*. Recall that for all
a€ G" we have :

For all x > 2 we have (x; L/K, t) = ¢(x; L/k, t).

Let a,b € G and denote C,, Cp their respective conjugacy classes. We denote
tap = %ﬂca — %ﬂcb- We note that a and b are conjugates in G if and only if

t:,b = 0. Define f, : G — G by f;(g) = g*.
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Elements of the proof

With the previous notations, we have :

@ Assume there exists d > 2 square-free such that ry(a) # ry(b) and that for
1 < ¢ < d square-free, one has (t, o f)™ = 0. Then we have :

log x log x

7(x; L/ K; tap) = u(d)(ra(a) — ra(b)) o + o ( - )

where v is the Mébius function.

@ Assume that for all square-free £ > 1 we have (t, o f;)* = 0. Then, for every
x > 2, we have :

w(x;L/K;tap) =0.




Elements of the proof

With the previous notations, we have :

@ Assume there exists d > 2 square-free such that ry(a) # ry(b) and that for
1 < ¢ < d square-free, one has (t, o f)™ = 0. Then we have :

log x log x

7(x; L/ K; tap) = u(d)(ra(a) — ra(b)) o + o ( - )

where v is the Mébius function.

@ Assume that for all square-free £ > 1 we have (t, o f;)* = 0. Then, for every
x > 2, we have :

w(x;L/K;tap) =0.

To conclude our main theorems, we consider the case where G ~ &(G). We
relate conditions (t,p o fr)™ = 0 to rs(a) = re(b), then we apply the previous
Lemma.



Elements of the proof

Démonstration.

Applying the inclusion-exclusion principle we see that

00x; L/K 1) = u(O)p(x7; L/K, tof). (1)

>1
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Démonstration.

Applying the inclusion-exclusion principle we see that

00x; L/K 1) = u(O)p(x7; L/K, tof). (1)

>1

By the induction property for all square-free £ > 1 such that (t, 50 f;)™ =0 we
have for all x > 2 i(x¥; L/K, tapofy) =0.

If d > 2 is a square-free integer such that ry(a) # rq(b), applying the Chebotarev
Theorem we deduce that ¢(x4; L/K; typ 0 fy) = (ra(a) — ra(b))xé + o(x4).




Elements of the proof

Démonstration.

Applying the inclusion-exclusion principle we see that

00x; L/K 1) = u(O)p(x7; L/K, tof). (1)

>1

By the induction property for all square-free £ > 1 such that (t, 50 f;)™ =0 we
have for all x > 2 w(x%; L/K,typofy) =0.
If d > 2 is a square-free integer such that ry(a) # rq(b), applying the Chebotarev
Theorem we deduce that ¢(x4; L/K; typ 0 fy) = (ra(a) — rq(b))xé + o(x4).
It is easy to see that ), , w(O)V(x?; LK, tapo fy) = o(x4).
Thus, . )

00x; L/K, th.) = 1u(d)(ral@) — ra(b))x? + o(x)

We conclude by a summation by parts.




Thank you.



