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Regularised optimal transport (ves, that slide again!)

We consider two probability measures 4, 7 on a compact subset of R?, a.c. with respect to the
Lebesgue measure.

EOT( ) = _inf [ Ix = yIPdr(x,y) + =KLl ),

where '(p, V) is the set of couplings of u,v.
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The Monge-Ampeére equation

In the unregularised case, the Brenier—McCann theorem states that T = V¢.
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The Monge-Ampeére equation

In the unregularised case, the Brenier—McCann theorem states that T = V¢.

The Monge—Ampeére equation is
f

goVgp

det V2¢ =

(Recall the change of variable formula)

February 21, 2025 3/31



Duality

dme
d(p®v)

(x,y) =exp (Z(fg(X) +g(y) — %HX — }/||2)> a.e.

where
) = —=1og [ o0 (2 (e:00) — 3lx 1) ) vyl
g(y)=—¢ |0g/e><p (i(fe(x) - %le — y||2)> p(x)dx.
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Maps from EOT

The entropic map between u and v is simply the barycentric projection of 7. :

T = [ ydmi) =Bl [ X =,
or
f yeé(gs(y)_%||X_y||2)d]/(y)
B [ e @2y Py (y)
It can also be verified from these optimality conditions that that 7T, = id — V.

T-(x):
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The one measure case

The dual conditions simplify to

o (~E00) = [ (2(£0) - Sl v1R) ) st
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The one measure case

The dual conditions simplify to

o (~E00) = [ (2(£0) - Sl v1R) ) st

A fixed point equation!
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The fixed point equation

Shuffling a bit, rewrite

0= [y ()

February 21, 2025 7/31



The fixed point equation

Shuffling a bit, rewrite

u(x) = / (m})d S exp (_nx ;Esz) ,;g;dy.

So that

Ful©) = # [2] (6 x o0 (-51)

=7 (2 (1- L),
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The fixed point equation

Shuffling a bit, rewrite

u(x) = / (m})d S exp (_nx ;Esz) ,;g;dy.

So that

Ful©) = # [2] (6 x o0 (-51)
=7 (2 (1- L),

FIAF(E) = —I&ll* FIFIE) (Reminder)
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Expansion for the potentials as ¢ — 0

Under suitable regularity assumptions, as ¢ — 0,

exp <2f€(x)> — o(x)(2me)9/2 (1 tetr < V;f(’ix)) + %(v log p(x)) (V log p(X))T> + o(s)) .
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Expansion for the potentials as ¢ — 0

Under suitable regularity assumptions, as ¢ — 0,

exp <2f€(x)> — o(x)(2me)9/2 (1 tetr ( V;f(’ix)) + %(v log p(x)) (V log p(X))T> + o(s)) .

First takeaway:

fa(gX) = 3 log p(x) + C: + O(e).
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Do we care?

Langevin equation
dX; = Vlog p(X;) dt + V2 dW,.
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Do we care?

Langevin equation
dX; = Vlog p(X;) dt + V2 dW,.

Workhorse of denoising diffusion models. Need to estimate the score function in practice.

February 21, 2025 9/31



The main question

1.1

Given a sample Xi,... X, e p, can | estimate V log p with

2VE,(x)

En

9

choosing suitably ¢, — 0 as n — c0?
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Prerequisites

Introduce

s KRG = [ Ay)me(x ) dn(y).
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Prerequisites

Introduce

s KRG = [ Ay)me(x ) dn(y).

(A) The density p is supported on a compact set K and C? on its domain. Furthermore,
Vx € K, we have that ¢/ < p(x) < L, for 0 < ¢ < L.

€ ed
(Reg) £(x) + S log p(x) + - log(2me)| < 2G|,

1. .
(Conv) —|Ife, — ferlloo — O, (No worries, we'll chat about this one!)
En

with \/5521/4/\/|ogn — 00, enp — 0 as n — oo.
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First big result

Proposition
Let f., be the entropic self-potential for p satisfying (A) and (Reg), and let . be its

empirical counterpart based on n i.i.d. samples from the distribution p. Assume (Conv) and

fix x € int(supp(p)). Choosing ﬁagm/\/log n — 00, as n — oo, there exists a sequence ap
with a,e, — 00, as n — oo, such that

an(fey(x) = £2,(x)) + anKe, [ (£, = £,) (1 +0(1))] (x)

3n€n exp (— o |ly = xI1?)
Vi | @ PP P o) oY) o)
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A CLT

Theorem (Limit distribution for the empirical potentials)

Consider X1, . ..

, Xn ~ p, as above, and suppose (A), (Reg) and (Conv) hold. Then, for any
X1,...,Xm € int(supp(p)) with m € N fixed,

) (f,(x1) — £,(>1)
Vne, Tt :

: N N <Om, Cz diag (p(xl)_l, . ,p(xm)_1>> ,
f;n(xm) — £, (Xm)

as n — oo provided that \/5621/4/\/|og n — oo, where

Gi= Y 2-H-R’ii(g)(—m(—l)”’(;ﬁ)(mmz)—d@

0<k,Kk'<oc0 n=0n'=0
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A word on the proof

2 antn exp _%HH -2
2n(fen() = fo o)) = 7 [ (1K) [(27r€n)<d/22p1/2y()’)p1/2)(')] L)

(id+K.,) ™t = (2id+(K., — id ) ,Z id K.,
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A word on the proof Il

(id =K., )" treated with the binomial formula.
Recall K.[h](x) := [ h(y)m(x,y)dp(y).
Thus,

Ke[R)(x) = / h(y)

=7 ]

February 21, 2025

1 (X
(272)92/p(x)p(y)(1 + o(1)) p< 2 >”(y)dy
1 I — y|P
(27e)d/2(1 + (1))eXp( 2e )Vp(y)dy'
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The (Conv) assumption

Start from ,
_Ix=Xill

fx) 1 exp(—+55") F(X)
5 _Iognz; (27re,,)2d/2 exp< - )

n n
1=

Now, let us replace f/s,, by —log(p)/2 in the identity above. This raises the question

1202 1 eXp(_%)
po(x) = n Z (2men)d/2p1/2(X;)’

i=1
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The (Conv) assumption Il

By Laplace's method

1 eXp(—M) 1/2
n
; ; (2775n)d/2p1/2(xi) - ( )(1 + 0( ))7 as ¢ — 0.

It further holds that

X—ANA; 2 X— 2
1 n exp(—” 2::,\\ ) - exp(— Il XH ) o as
d/2,1/2 . d/2 1 2 T
n Zl,l (27e,)d/2p1/2(X;) (27e,)4/2p 7 (X) N

as n — 00,&, — 0 and fz-:,,// log n — oo.
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Hilbert’s mindset

Wir mussen wissen, wir werden wissen
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Towards the two-measure case

an€n

an (£, ()= £,00) + K2, [30(@) = £,(0)] () = =222 [ 7, (x.9)4G50) + (1),

then
dn (fen B f€n>
Ben — 8ep
_ _angn (Id—Kéjan}i)_l _KEV,,(Id_K#nKEVn)_l fﬂ-an(7y)dGlr;(y) +o (1)
— n \—(d-KLKY)TIKE, (id—KEKZ)T! J e, (x,-)dGh(x) P

This is similar to expansion in A. Gonzalez-Sanz and S. Hundrieser' works.
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Bregman divergence and Kim-McCann geometry

60 + g0(y) — 3 1x ~ ¥I2 = Yo(x) + doly) ~ (x.y) =: D(x,)
Assume

[ 600) + wo(x) = (x,3) = 3y = x) V260 (x)(y = x)|| < Clly = x|
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Flavien Léger’s expansions

We assume

£0) — fo(x) + & log n(x) + =2 log(2n=)| < 2P

<e2Celyll?,

&) ~ go(y) + 5 logu(y) + =0 log(2n)

for all € < g9, where fy, go are the unregularized dual potentials.
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About the why...

Start from the dual condition

1= / me(x, y)v(y)dy.

Then plugging-in the assumed expansion, we get

1:/}m<;yx)+&() I = y12] ) o)y

:/ (27r5)d/2 ()l

:/ (27r5)d/2 ()l
/ Vet V20(x)]

(2me) d/2

1
2
( )+ aoly ﬂx—nm+anVWMy
on (|

X*) V2o (x)(y —

( ;Ky—va%aww—

)] + ouﬁuumy

)] +o(1)>

1/2
v 4(y) d

Vr(x*) Y
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Composition of Sinkhorn operators
Theorem
Under regularity assumptions, it holds that

b KL K [ (32)

_ 1+o(1) /( L ) \/det[v2¢3(yz)1det[v2¢s(y>1

—U2(y) 2men)d/? det[V2¢5(y2) + V2¢5(y)]

T
<o~ =) [V2650a)] 0 — )+ o (2220 ) )220y,
)

ase, — 0.
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Two-measure only one sample

A  antn 5
an(Fo(x) — £ (x)) = /(d K2 KE Y[ (6, Y )IAGE(y) + 0p(L),
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Two-measure only one sample

dn€n

an(fen(x) = £, (x)) = = N

We aim at finding hy(y) such that

(id = K2, KE ) 7 e, (x, )1dG4 (y) + 0p(1),

) = KEKEIOL0) = | oy (2Dl +of)) .

February 21, 2025 24 /31



Constant curvature case

In the case where V2¢(’§(y) = A, Vy, the equation of previous slide becomes, setting

() = i

Rely) — (12(y) * h)(y) = {(1)d/2 e (-2 Dlxy) o)) |.

2men
where
det A 1 +
= ——vy Ay |.
72(y) (47r5n)d/2eXp< 2 y)
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Constant curvature case |l

Denoting by F the Fourier transform, we thus get that

(27r5n)—d/2]_— [efiD(X,-)+o(1)}
— : (¥)
1= F()]

1 -1
)= iy arcg T

Noticing that
Fll(€) = exp (—enTA1E),

we can even rewrite

he(y) <

1 (27r5,,)—d/2]: [e*?InD(X,')Jro(l)}
oo AT v)
v2(y)ut/2(x) en ETALE 1 o(2))
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Conclusion so far

Clear description of what is happening!
In the constant curvature case,

an(fe, () = f2,(x))

— 1 D(x)4o
antn 1 . (2men) =92 F {e L D(x,)+ (1)]

“Va | PG en ETATIE + 0(ep) )G () + 0p(1).

Is it reasonable?
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T. Manole’s idea

The idea of Tudor is the following:

Solve the Monge—Ampére equation with kernel density estimators Py, g, based on a kernel K,
ie.,

det (V2¢(x)) = c%%);b)(@‘
Set

:I\',,(X) = Vo(x).
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T. Manole’s idea

From
det (V2$(x)) = APLZ,
Gn o Vo(x)
a linearisation yields

~

L(¢*¢)%ah*q7

where Lu = —div(qgVu(V¢f))
Solving a stochastic PDE (Boundary conditions!).
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T. Manole’s result

For fixed x € T¢,

where

2
) s MO = T (Vo).

Z(X) 1 T (-F[K](M(X)g)

~ (%) Jre 21 (M(x)E, €)
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Conclusion

@ EOT with small regularisation parameter is like optimal transport between slightly
smoothed densities, up to picking the right kernels (somehow conjectured in Feydy's

thesis)!

@ The proof does not required any boundary conditions, EOT is taking care of them on its
own.

© Beautiful mathematical picture.
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Proof

= X5 - en X5

= apenlo /e L) ke (x,)d //e )d

= antnplog Xp c, €n P Xp pn

+ apen log (/ exp <1f> ke, (x dp,,//exp ( > dp,,>
€ En

=: C(x) + D(x).
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(2) kol
En

)dp

)dGn |
(2) kol

Jexp -

ape

)dp
ken (X,
vn fexp (éf)

2f) k ,')dGn)
(é‘ln ) E”(X
fexp
an€n
)dG, (
- 5n(X7
vn fexp(slnf)k dp

nToO (
e, dG



Proof Il

D(x) = —apenlog

= —ape, log

= —ape, log

= —ape, log

fexp(

LF) fey (. -)dﬁn>
1

J exp (LF) key(x,)dpn
[ exp (

[ exp (%f) (1 +

F 2o (F = ) ke, ~)dﬁn)

S exp (5F) key(x.)dpn

1+

fexp (1) keulx, )b

2 (F = )+ O, 2(F — £2)) kan(x,‘)dﬁn)

[ exp (%f) (a,,(f — £) + O(ane; }(f — f)2)) ke, (x,-)dpn

€ndn

S exp (L) key(x.)dpn
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Proof IV

Jexp (LF) (an(F = £) + O(ans, (7 = £2) ) ke, (x, )b

Jexp (LF) ke, (x,

Jexp (Lf) (an(F = £) + Olans, *(F ~ ) )) ke (%, )dpn
 fep (gf) ke (x,)dp+ L fexp( f) ke, (x,)dG,

)dp
.
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The denominator

1 kEn(X)y) o
np(x) / (27ren)d/2\/de"(y ) +o(1)

. d/4
converges to zero if ﬁan/ — 00.
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The numerator

/exp (;f) <an(f —f)+ O(anegl(f — f)2)) ke, (x,-)dpn
= /exp <€lnf> an(l? —f)+ O(ang;:l(f - f)z)) ke, (x;-)dp
+ Tz [ (26) (anlF0) = £02) + 00(0)) ke x)G()

= [0 (2¢) (anlF = )+ Oy (7~ 1)) kel o

dn€n 1 1 .
- v ] @re)d4/oy) <€n(f()’) —f(y)) +op(1)> ke.(x, y)dGn(y)
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