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Fourier

Oscillations: "A Major" chord

f (x) =
∞∑

k=−∞
f̂ (k)e2πixk , e2πixk = cos(2πxk) + i sin(2πxk).
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Fourier

Oscillations: "A Major" chord

A: 440 Hz
f (x) = sin(440πx)

C#: 550 Hz
f (x) = sin(550πx)

E: 660 Hz
f (x) = sin(660πx)
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Fourier

Fourier transform

Let f ∈ L1(R). We define

f̂ (ξ) =

∫
R

e−2πix ·ξ f (x) dx (ξ ∈ R).

Fourier uncertainty: "the mass of a function and its Fourier transform
cannot both be concentrated near the origin"

Heisenberg: the mass of f and f̂ cannot be arbitrarily concentrated
near the origin

||f ||22 ≤ 4π|||x |f ||2 · |||y |̂f ||2
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Fourier extremal problems

Fourier extremal problems

Impose conditions on f , f̂ and optimize some quantity
One-Delta problem: Find

A := inf

∫
R
|f (x)| dx ,

subject to the conditions f (0) ≥ 1, f (x) ≥ 0, f is continuous, and
supp f̂ ⊂ [−1,1]

A = 1, and (
sin(πx)

πx

)2

is the only extremizer
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Fourier extremal problems

Monotone one-delta problem
Joint with A. Chirre, D. K. Dimitrov, and M. Sousa

Problem
Find

A1 := inf

∫
R
|f (x)| dx ,

subject to the conditions f (0) ≥ 1, f (x) ≥ 0, f is continuous, supp
f̂ ⊂ [−1,1], and f is radially decreasing

Theorem
There exists an even extremizer
1.2750 < A1 < 1.2772
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Joint work with E. Carneiro, M.B. Milinovich, A. P. Ramos Another extremal problem

A Fourier extremal problem

Extremal Problem (EP)
Given 0 ≤ A <∞, find

C(A) := sup
0 6=F∈A

2π
(∫ 0
−∞ F̂ (t)eπtdt −

∫∞
0 F̂−(t)eπtdt − A

∫∞
0 F̂+(t)eπtdt

)
||F ||1

where the supremum is taken over the class of functions

A = {F : R→ C; F ∈ L1(R), F̂ is real-valued}.
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Joint work with E. Carneiro, M.B. Milinovich, A. P. Ramos Another extremal problem

Results concerning the EP

Theorem
Concerning the EP defined above:

1 The supremum can be taken over F ∈ A with F̂ ∈ C∞c
2 One has the endpoint values C(0) = 2 and limA→∞ C(A) = 1
3 The function A 7→ C(A) is continuous and non-increasing in A.

Hard to find exact value of C(A)!
Look for bounds for values of A that interest us

Theorem
We have the following estimates:

1 1.14599 < C(1) < 1.14744
2 1.06079 < C(3) < 1.06249
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The Least Quadratic Nonresidue

Least Quadratic Nonresidue: Background I

Fix q prime. We consider the group of reduced residues (Z/qZ)∗.

Definition
The number a ∈ N is called a quadratic residue if gcd(a,q) = 1 and
there exists x ∈ N with gcd(x ,q) = 1 and a ≡ x2 mod q. It is called a
quadratic nonresidue if gcd(a,q) = 1 but no such x exists.

Of course 1 is always a quadratic residue. The more interesting
question is what is the first nonresidue:

Problem
Given q prime, if we define the least quadratic nonresidue mod q to be

nq := min{a ∈ {1,2, ...,q − 1}|a is a quadratic nonresidue.}

how large can it be?
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The Least Quadratic Nonresidue

Background II

Recall that if q is a prime, we have the Legendre symbol defined on
integers n

χ(n) =


1 if n is a quadratic residue mod q
−1 if n is a quadratic nonresidue mod q
0 otherwise.

Moreover, the Legendre symbol has two important properties:
It is totally multiplicative: for m,n ∈ Z we have χ(mn) = χ(m)χ(n)

It is q-periodic: for n, k ∈ Z we have χ(n + kq) = χ(n)

i.e χ is a Dirichlet character modulo q.
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The Least Quadratic Nonresidue

Background III

With this function, we can make a first elementary observation:

Fact 1
The least quadratic nonresidue nq is a prime.

Proof.
Since nq 6= 1 is a non-empty product of primes pα1

1 ...pαk
k . Since the

Legendre symbol is totally multiplicative:

−1 = χ(nq) = χ(p1)α1 ...χ(pk )αk

So there must be an αi odd, and pi prime for which χ(pi) = −1. By
minimality, it follows that nq = pi , i.e., nq is prime.

In fact, for any prime p there will be a q such that nq = p. So nq can be
arbitrarily big, but is there a relation between the sizes of q and nq?

Emily Quesada-Herrera Fourier optimization and the LQNR January 2024 13 / 31



The Least Quadratic Nonresidue

Background III

With this function, we can make a first elementary observation:

Fact 1
The least quadratic nonresidue nq is a prime.

Proof.
Since nq 6= 1 is a non-empty product of primes pα1

1 ...pαk
k . Since the

Legendre symbol is totally multiplicative:

−1 = χ(nq) = χ(p1)α1 ...χ(pk )αk

So there must be an αi odd, and pi prime for which χ(pi) = −1. By
minimality, it follows that nq = pi , i.e., nq is prime.

In fact, for any prime p there will be a q such that nq = p. So nq can be
arbitrarily big, but is there a relation between the sizes of q and nq?

Emily Quesada-Herrera Fourier optimization and the LQNR January 2024 13 / 31



The Least Quadratic Nonresidue

Background III

With this function, we can make a first elementary observation:

Fact 1
The least quadratic nonresidue nq is a prime.

Proof.
Since nq 6= 1 is a non-empty product of primes pα1

1 ...pαk
k . Since the

Legendre symbol is totally multiplicative:

−1 = χ(nq) = χ(p1)α1 ...χ(pk )αk

So there must be an αi odd, and pi prime for which χ(pi) = −1. By
minimality, it follows that nq = pi , i.e., nq is prime.

In fact, for any prime p there will be a q such that nq = p. So nq can be
arbitrarily big, but is there a relation between the sizes of q and nq?

Emily Quesada-Herrera Fourier optimization and the LQNR January 2024 13 / 31



The Least Quadratic Nonresidue

History of the problem

The first serious study of this quantity is due to Vinogradov who in
1918 managed to prove

nq = O(q
1

2
√

e log2 q).

He further conjectured that for every ε > 0,

nq = Oε(qε)

The best unconditional (i.e. not depending on GRH) bound to date is
from the 1960’s is due to Burgess, who established

nq = Oε(q
1

4
√

e
+ε

)

In 1952, Ankeny managed to prove that under the Generalized
Riemann Hypothesis (GRH) we can get something better than what
Vinogradov originally conjectured:

nq = O(log2 q)
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The Least Quadratic Nonresidue

LQNR: The main result

Conjecture (probability heuristics): nq = O(log q)
Assuming GRH, best for past 70 years is nq ≤ C log2 q. Effort:
improve the implicit constant C!
Best (asymptotic) value: C = 0.794 (Lamzouri, Li, Soundararajan,
2016).

Theorem (Carneiro, Milinovich, QH., Ramos)
Assuming GRH,

nq ≤
(

1
C(1)2 + o(1)

)
log2 q

as q →∞.

(Our estimates: 0.759 < 1
C(1)2 < 0.762)

Strategy: Guinand-Weil for the Dirichlet L-function

L(s, χ) :=
∞∑

n=1

χ(n)

ns .
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The Least Quadratic Nonresidue

The explicit formula

Lemma (Guinand–Weil Explicit Formula)

Assume GRH. For “nice", even, real-valued h with ĥ(0) = 0,∑
γχ

h (γχ) =
1

2π

∫ ∞
−∞

h(u) Re
Γ′

Γ

(
2− χ(−1)

4
+ i

u
2

)
du

− 1
π

∞∑
n=2

Λ(n)√
n
χ(n)ĥ

(
log n
2π

)
.

where the sum on the left-hand side runs over the ordinates of the
non-trivial zeros of L(s, χ) and Λ(n) is the von Mangoldt function
defined to be log p if n = pk , p a prime and k ≥ 1, and zero otherwise.
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The Least Quadratic Nonresidue

Asymptotic Analysis I

Let’s look at the sum over primes first!

1
π

∞∑
n=2

Λ(n)χ(n)√
n

ĥ
(

log n
2π

)
=

1
π

nq−1∑
n=2

+
∞∑

n=nq

Λ(n)χ(n)√
n

ĥ
(

log n
2π

)
and now notice χ(n) = 1 for all n < nq, by the definition of the LQNR,
so that the above is

≥ 1
π

nq−1∑
n=2

Λ(n)√
n

ĥ
(

log n
2π

)
− 1
π

∞∑
n=nq

Λ(n)√
n

∣∣∣∣ĥ( log n
2π

)∣∣∣∣
which by the Prime Number Theorem is equal to

=
√

nq

∫ 0

−∞
F̂ (y)eπydy −

√
nq

∫ ∞
0
|F̂ (y)|eπydy + O((log log q)2)
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The Least Quadratic Nonresidue

Asymptotic Analysis II

Moreover, by Stirling’s formula Γ′

Γ (s) = log s + O
(

1
|s|

)
for |s| > 1, so∣∣∣∣∫ ∞

−∞
h(u) Re

Γ′

Γ

(
1
4

+
aχ
2

+ i
u
2

)
du
∣∣∣∣ ≤ ∫ ∞

−∞
|h(u)| log(2+|u|)du = O(1)

Finally, the sum over zeros is bounded by∣∣∣∣∑
γχ

h (γχ)

∣∣∣∣ ≤∑
γχ

|F (γχ) |

=

∫ ∞
−∞
|F (t)|dN(t , χ)

≤ log q
2π
||F ||1 + O

(
log q

log log q

)
again using Stieltjes integration, where N(T , χ) is the number of zeros
β + iγ of L(s, χ) with 0 < β < 1 and 0 ≤ γ ≤ T .
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The Least Quadratic Nonresidue

Asymptotic Analysis II
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Γ (s) = log s + O
(

1
|s|

)
for |s| > 1, so∣∣∣∣∫ ∞

−∞
h(u) Re

Γ′

Γ

(
1
4

+
aχ
2

+ i
u
2

)
du
∣∣∣∣ ≤ ∫ ∞

−∞
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The Least Quadratic Nonresidue

Conclusion: Obtaining the Extremal Problem

From our inequalities for the LHS and the RHS, we can say

√
nq

∫ 0

−∞
F̂ (y)eπydy−

√
nq

∫ ∞
0
|F̂ (y)|eπydy ≤ log q

2π
||F ||1+O

(
log q

log log q

)
which we can rearrange obtain

lim sup
q→∞

√
nq

log q
≤ 1

2π
||F ||1∫ 0

−∞ F̂ (y)eπydy −
∫∞

0 |F̂ (y)|eπydy
.

Taking the infimum over the class of admissible functions, we have

nq ≤
(

1
C(1)2 + o(1)

)
log2 q
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The Least Prime in an Arithmetic Progression

History and Background I

For q ∈ N and 1 ≤ a ≤ q with gcd(a,q) = 1, we consider the arithmetic
progression

a,a + q,a + 2q, ...,a + kq, ...

Dirichlet’s breakthrough (1837): contain infinitely many primes
A natural follow-up question is the following:

Problem
If q,a are as above, and we define the least prime in the arithmetic
progression ≡ a mod q to be

P(a,q) := min{a + kq | k ∈ Z,a + kq prime}

how large can it be?
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The Least Prime in an Arithmetic Progression

History and Background II

Linnik, 1944: P(a,q) ≤ CqL. (universal, implicit constants)
Explicit L: Pan, Chen, Jutila, Graham, Wang, and Heath-Brown...
Xylouris: L = 5
Conjecture: P(a,q) ≤ Cεq1+ε.

Assuming GRH, in 1996 Bach and Sorensen showed that as q →∞

P(a,q) ≤ (1 + o(1))(φ(q) log q)2

Emily Quesada-Herrera Fourier optimization and the LQNR January 2024 21 / 31



The Least Prime in an Arithmetic Progression

History and Background II

Linnik, 1944: P(a,q) ≤ CqL. (universal, implicit constants)
Explicit L: Pan, Chen, Jutila, Graham, Wang, and Heath-Brown...
Xylouris: L = 5
Conjecture: P(a,q) ≤ Cεq1+ε.

Assuming GRH, in 1996 Bach and Sorensen showed that as q →∞

P(a,q) ≤ (1 + o(1))(φ(q) log q)2

Emily Quesada-Herrera Fourier optimization and the LQNR January 2024 21 / 31



The Least Prime in an Arithmetic Progression

History and Background II

Linnik, 1944: P(a,q) ≤ CqL. (universal, implicit constants)
Explicit L: Pan, Chen, Jutila, Graham, Wang, and Heath-Brown...
Xylouris: L = 5
Conjecture: P(a,q) ≤ Cεq1+ε.

Assuming GRH, in 1996 Bach and Sorensen showed that as q →∞

P(a,q) ≤ (1 + o(1))(φ(q) log q)2

Emily Quesada-Herrera Fourier optimization and the LQNR January 2024 21 / 31



The Least Prime in an Arithmetic Progression

History and Background II

Linnik, 1944: P(a,q) ≤ CqL. (universal, implicit constants)
Explicit L: Pan, Chen, Jutila, Graham, Wang, and Heath-Brown...
Xylouris: L = 5
Conjecture: P(a,q) ≤ Cεq1+ε.

Assuming GRH, in 1996 Bach and Sorensen showed that as q →∞

P(a,q) ≤ (1 + o(1))(φ(q) log q)2

Emily Quesada-Herrera Fourier optimization and the LQNR January 2024 21 / 31



The Least Prime in an Arithmetic Progression

LPAP: The main result

This was also refined by Lamzouri, Li, and Soudararajan, who proved
that

P(a,q) ≤ (1− δ + o(1))(φ(q) log q)2

for a small but unspecified δ > 0. We showed that the constant in the
conditional bounds can be improved:

Theorem (Carneiro, Milinovich, QH., Ramos)
Conditionally on the GRH,

P(a,q) ≤
(

1
C(3)2 + o(1)

)
(φ(q) log q)2

as q →∞.

since 1
C(3)2 < 0.8887.
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The Least Prime in an Arithmetic Progression

LPAP: Outline of the Strategy

Strategy: Guinand-Weil
Key ingredient 1: cancellation property of Dirichlet characters
(orthogonality)

1
φ(q)

∑
χ mod q

χ(a)χ(n) =

{
1 if n ≡ a mod q
0 otherwise

Key ingredient 2: Brun-Titschmarch inequality (primes in short
intervals)

#{p prime : x < p ≤ x + y ,p ≡ a mod q} ≤ 2y
φ(q) log(y/q)

(this is where the parameter A = 3 comes from).
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Estimating the Sharp Constants

Estimating the Sharp Constant: Lower Bound I

Examples! The expression in the numerator of our functional of interest∫ 0

−∞
F̂ (t)eπtdt −

∫ ∞
0

F̂−(t)eπtdt − A
∫ ∞

0
F̂+(t)eπtdt

suggests us that it is beneficial to take functions that are concentrated
on the left side of origin.

Inspired by this intuition, we consider linear combinations of functions
of the form |x |keπx1R− , k ∈ N, and we optimize over translations and
dilations of such combinations. For example, in the case A = 1, a good
approximant is F̂ (x) = g(x−0.47

0.42 ) where

g(x) = ex
(

0.0006x7 + 0.0005x5 + x3 + 0.0405x
)

(sgn(x)− 1)
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Estimating the Sharp Constants

Estimating the Sharp Constant: Lower Bound II

which looks like

Figure: Plot of f (x) for LQNR

and gives us
1.143 < C(1)
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Estimating the Sharp Constants

Estimating the Sharp Constant: Lower Bound II

We do a similar process for A = 3, which gives us

g(x) = ex
(

0.001x7 − 0.00685x5 + 1.x3 − 0.0155x
)

(sgn(x)− 1.)

and we take F̂ (x) = g
(x−0.26

0.32

)
as our approximant

Figure: Plot of f(x) for LPAP
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Estimating the Sharp Constants

Estimating the Sharp Constant: Lower Bound III

This last function gives
1.049 < C(3).

In the above, we were only looking for linear combinations of
|x |keπt1R− when k ≤ 7, but running this kind of procedure allowing x
to be raised to even higher powers (k up to 23), we obtain the stated
lower bounds:

1 1.14599 < C(1)

2 1.06079 < C(3)
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Estimating the Sharp Constants

Estimating the Sharp Constant: Upper Bound I

Recall that

C(A) , sup
06=F∈A

2π
(∫ 0
−∞ F̂ (t)eπtdt −

∫∞
0 F̂−(t)eπtdt − A

∫∞
0 F̂+(t)eπtdt

)
||F ||1

Fix F ∈ A. For a function ψ ∈ L1(R+) with −eπt ≤ ψ(t) ≤ Aeπt when
t > 0, we have by Fourier multiplication∫ 0

−∞
F̂ (t)eπtdt −

∫ ∞
0

F̂−(t)eπtdt − A
∫ ∞

0
F̂+(t)eπtdt

≤
∫ ∞
−∞

F̂ (t)(1R−(t)eπt − 1R+(t)ψ(t))dt

=

∫
R

F (x)( ̂1R−eπ(·) − 1̂R+ψ)dx

≤ ||F ||1||( ̂1R−eπ(·) − 1̂R+ψ)||∞
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Estimating the Sharp Constants

Estimating the Sharp Constant: Upper Bound II

So one can find upper bounds looking for extremizers of the following
dual problem:

Dual Extremal Problem (EP*)
Given A ≥ 0, find

C∗(A) := inf
ψ∈B

2π ||( ̂1R−eπ(·) − 1̂R+ψ)||∞

where B = {ψ ∈ L1(R+);−eπt ≤ ψ(t) ≤ Aeπt when t > 0}

since, by the above, C(A) ≤ C∗(A).
For example, one can take the truncated function ψ(t) = eπt1[0,T ](t)
(A = 1 for simplicity) which yields

||( ̂1R−eπ(·) − 1̂R+ψ)||∞ = sup
x∈R

∣∣∣∣2− e2πixT eπT

2πix + π

∣∣∣∣
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Estimating the Sharp Constants

Estimating the Sharp Constant: Upper Bound III

And we can calculate the sup on the RHS and optimize over T using
techniques of standard calculus. Experimentally we have found it is
advantageous to allow for changes of sign in ψ. Introducing a finite
number of steps 0 = T0 < T1 < ... < TN , take

ψ(t) =
N−1∑
n=0

(−1)neπt1[Tn,Tn+1](t)

and optimize over the best choices of T0, ...,TN , whence we obtain the
stated upper bounds for A = 1,3:

1 C(1) < 1.14744
2 C(3) < 1.06249
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Thank you

Thank you!
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