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Definitions

Define d(n) and λ(n):

d(n) =
∑

d|n 1

λ(n) = (−1)a1+a2..+ak

where
n = pa1

1 pa2
2 ...pak

k
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Riemann Zeta function

For ℜs > 1,

ζ(s) =

∞∑
n=1

n−s.

We have
ζ(s) = χ(s)ζ(1− s)

where

χ(s) = πs−1/2Γ(
1−s
2 )

Γ( s2 )
.
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Voronoi-type summation formulas
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The Voronoi summation formula for d(n)

The celebrated result of Voronoi associated with d(n) is given by∑′

n≤x

d(n) = x(log x+ (2γ − 1)) +
1

4

+
√
x

∞∑
n=1

d(n)√
n

(
−Y1(4π

√
nx)− 2

π
K1(4π

√
nx)

)
.

Here, Yν(z) and Kν(z) denote the Bessel and modified Bessel
functions of the second kind of order ν respectively.
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The Dirichlet Divisor problem

∑
1≤n≤x

d(n) = x log(x) + (2γ − 1)x+∆(x).

Using Voronoi summation formula, Voronoi(1910) proved that

∆(x) = O(x1/3 log x) as x → ∞.
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The general form

Voronoi also gave a more general form, namely,

∑′

α≤n≤β

d(n)f(n) =

∫ β

α

(2γ + log t)f(t) dt

+ 2π

∞∑
n=1

d(n)

∫ β

α

f(t)

(
2

π
K0(4π

√
nt)− Y0(4π

√
nt)

)
dt.

where f(t) is a function of bounded variation in (α, β) with 0 < α < β.
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Generalization

Let σ−s(n) =
∑

d|n d
−s.

We have∑
α<n<β

σ−s(n)f(n) =

∫ β

α

(ζ(1 + s) + t−sζ(1− s))f(t)dt

+ 2π

∞∑
n=1

σ−s(n)n
s/2

∫ ∞

1

t−s/2f(t)

{(
2

π
Ks(4π

√
nt)

−Ys(4π
√
nt)

)
cos

(
πs

2

)
− Js(4π

√
nt) sin

(
πs

2

)}
dt.
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For ℜs > 1,

ζ4(s)

ζ(2s)
=

∞∑
n=1

d2(n)

ns
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Voronoi summation for d2(n)

Theorem (C.-Dixit(2024))

Let d(n) be the divisor function and ϕ(x) be a function satisfying
some nice hypotheses, then assuming RH and the simplicity of the
zeros of the zeta function, there exists a sequence of numbers {Tn}∞n=1

with Tn → ∞, such that

∞∑
n=1

d2(n)ϕ(n) =
1

π8

∫ ∞

0

(A0 +A1 log x+A2 log
2 x+ π6 log3 x)ϕ(x)dx

+ lim
Tn→∞

∑
|γm|≤Tn

ζ4(ρm

2 )

2ζ ′(ρm)

∫ ∞

0

ϕ(x)x
ρm
2 −1dx

+

√
2

π2

∞∑
n=1

nc(n)

∫ ∞

0

∫ ∞

0

∫ ∞

0

ϕ(z)

z

(
2

π
K0

(
4
√
x
)
− Y0

(
4
√
x
))

(
2

π
K0

(
4
√
y
)
− Y0

(
4
√
y
))

cos

(
2
√
nxy

zπ

)
dzdxdy.
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c(n) is a multiplicative function defined as

c(pk) =

(
k + 3

6

)
− p

(
k + 1

6

)
.
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Cohen-Voronoi type Identity

Previous Results:

Voronoi and later Cohen had found an interesting identity for d(n)

∞∑
n=1

d(n)
x log(x/n)

x2 − n2
=

π2

4
log x− π2

2
γ +

log(4π2x)

4x
+

∞∑
n=1

d(n)K0(4π
√
nx).

By replacing x → ix and x → −ix and adding and simplifying

x

π

∞∑
n=1

d(n)

x2 + n2
= −1

2
log x− γ − 1

4πx

+

∞∑
n=1

d(n)

(
K0(4πe

iπ/4
√
nx) +K0(4πe

−iπ/4
√
nx)

)
.
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x

π

∞∑
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d(n)

x2 + n2
= −1

2
log x− γ − 1

4πx
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∞∑
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d(n)

(
K0(4πe

iπ/4
√
nx) +K0(4πe

−iπ/4
√
nx)
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Cohen-type identity for d2(n)

Theorem (C.-Dixit(2024))

∞∑
n=1

d2(n)
x log2(x/n)

x2 − n2

= 8

∞∑
n=1

c(n)

(
K0(4π

√
nx)K1(4π

√
nx)−

√
nx

K2
0 (4π

√
nx)

4π

)
+ 4R1(x) + 4R0(x) + lim

Tn→∞

∑
|γm|≤Tn

Rρm(x).
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R0(x) = C2 log
2 x+ C1 log x+ C0.

R1(x) = 4π2 log
2 x

x
.

Rρm
=

ζ4(ρm+1
2 )Γ4(ρm+1

2 )

ζ ′(ρm)Γ(ρm)
(4π2x)−

1+ρm
2 .
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Cohen for product of generalized divisor

∞∑
n=1

σa(n)σb(n)
x
(
x−a − n−a

)(
x−b − n−b

)
x2 − n2

= πa+b22a+2b+2 sin(πa/2) sin(πb/2)

∞∑
n=1

c(n)(16π2nx)(−a−b)/2

(
Ka−1

(
4π

√
nx
)
Kb

(
4π

√
nx
)
+Kb−1

(
4π

√
nx
)
Ka

(
4π

√
nx
)

+
(a+ b− 1)

√
nx

4π
Kb

(
4π

√
nx
)
Ka

(
4π

√
nx
))

+R(x).
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Voronoi summation for Liouville Lambda function

Theorem (C.-Dixit(2024))

Let λ(n) be the Liouville Lambda function and ϕ(x) be a function
satisfying certain nice hypothesis, then there exists a sequence of
numbers {Tn}∞n=0 with Tn → ∞, such that

∞∑
n=1

λ(n)ϕ(n) =
1

2ζ( 12 )

∫ ∞

0

ϕ(x)√
x
dx

+ lim
Tn→∞

∑
|γm|<Tn

ζ(2ρm)

ζ ′(ρm)

∫ ∞

0

ϕ(x)xρm−1dx

+
1√
2π

∞∑
p=1

∞∑
q=1

µ(q)
√
q

∫ ∞

0

ϕ(x)√
x

sin

(
p2qx

2π
+

π

4

)
dx,

where µ(n) is the Mobius function and c(n) = pµ(q) for n = p2q and q
is square-free.

Chorge, Shashank
Voronoi summation formula, their applications and
other identities



Cohen-type identity for Liouville Lambda

Theorem (C.-Dixit(2024))

1

2π2

∞∑
n=1

λ(n)
n

x2 + n2
=

x−1/2

2π
√
2

∞∑
p=1

∞∑
q=1

µ(q)
√
q
e

−πxqp2

2

+
ζ(0)

2ζ(1/2)Γ(1/2)
(2πx)−1/2

+ lim
Tn→∞

∑
|γm|≤Tn

ζ(2ρm − 1)Γ(2ρm − 1)

ζ ′(ρm)Γ(ρm)
(2πx)−ρm .
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Original Ramanujan-Guinand Identity

For αβ = π2, we have

√
α

∞∑
n=1

σ−zn
z/2Kz/2(2nα)−

√
β

∞∑
n=1

σ−zn
z/2Kz/2(2nβ)

=
1

4
Γ

(
z

2

)
ζ(z)(β

1−z
2 − α

1−z
2 ) +

1

4
Γ

(
−z

2

)
ζ(−z)(β

1+z
2 − α

1+z
2 ).
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Ramanujan-Guinand type Identity

For αβ = 1

√
2

2

∞∑
n=1

λ(n)n2α2K1/2(πn
2α2)

=

√
2

16

∞∑
n=1

c(n)n2β3K1/2

(
n2πβ2

8

)(
K1/4

(
n2πβ2

8

)
+K3/4

(
n2πβ2

8

))

+
Γ(1/2)

2ζ(1/2)Γ(1/4)
(
√
πα)−1/2 + lim

Tm→∞

∑
|γm|≤Tn

ζ(2ρm)Γ(ρm)

ζ ′(ρm)Γ(ρm/2)
(
√
πα)−ρm .
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Potential Questions

How can Voronoi summation formula for d2(n) be used for
reducing the error term for

∑
n≤x d

2(n)?

How can we use Voronoi summation formula for λ(n) to show
infinitely many sign changes in

∑
n≤x λ(n)?

How can one use Cohen type formulas to derive the Voronoi
summation formulas?
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Thank You
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