Voronoi summation formula, their applications and other identities

Shashank Chorge
Postdoc associate
IIT Gandhinagar
CNPT Conference
Joint work with Professor Atul Dixit

June 20, 2024

Definitions

Define $d(n)$ and $\lambda(n)$:

- $d(n)=\sum_{d \mid n} 1$
- $\lambda(n)=(-1)^{a_{1}+a_{2} . .+a_{k}}$
where

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}
$$

Riemann Zeta function

For $\Re s>1$,

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s} .
$$

Riemann Zeta function

For $\Re s>1$,

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s} .
$$

We have

$$
\zeta(s)=\chi(s) \zeta(1-s)
$$

where

$$
\chi(s)=\pi^{s-1 / 2} \frac{\Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} .
$$

Voronoi-type summation formulas

The Voronoi summation formula for $d(n)$

- The celebrated result of Voronoi associated with $d(n)$ is given by

$$
\begin{aligned}
\sum_{n \leq x}^{\prime} d(n)= & x(\log x+(2 \gamma-1))+\frac{1}{4} \\
& +\sqrt{x} \sum_{n=1}^{\infty} \frac{d(n)}{\sqrt{n}}\left(-Y_{1}(4 \pi \sqrt{n x})-\frac{2}{\pi} K_{1}(4 \pi \sqrt{n x})\right) .
\end{aligned}
$$

- Here, $Y_{\nu}(z)$ and $K_{\nu}(z)$ denote the Bessel and modified Bessel functions of the second kind of order ν respectively.

The Dirichlet Divisor problem

$$
\sum_{1 \leq n \leq x} d(n)=x \log (x)+(2 \gamma-1) x+\Delta(x)
$$

The Dirichlet Divisor problem

$$
\sum_{1 \leq n \leq x} d(n)=x \log (x)+(2 \gamma-1) x+\Delta(x)
$$

Using Voronoi summation formula, Voronoi(1910) proved that

$$
\Delta(x)=O\left(x^{1 / 3} \log x\right) \text { as } x \rightarrow \infty .
$$

The general form

Voronoi also gave a more general form, namely,

The general form

Voronoi also gave a more general form, namely,

$$
\begin{aligned}
& \sum_{\alpha \leq n \leq \beta}^{\prime} d(n) f(n)=\int_{\alpha}^{\beta}(2 \gamma+\log t) f(t) \mathrm{d} t \\
& \quad+2 \pi \sum_{n=1}^{\infty} d(n) \int_{\alpha}^{\beta} f(t)\left(\frac{2}{\pi} K_{0}(4 \pi \sqrt{n t})-Y_{0}(4 \pi \sqrt{n t})\right) \mathrm{d} t
\end{aligned}
$$

where $f(t)$ is a function of bounded variation in (α, β) with $0<\alpha<\beta$.

Generalization

Let $\sigma_{-s}(n)=\sum_{d \mid n} d^{-s}$.
We have

$$
\begin{aligned}
\sum_{\alpha<n<\beta} \sigma_{-s}(n) f(n) & =\int_{\alpha}^{\beta}\left(\zeta(1+s)+t^{-s} \zeta(1-s)\right) f(t) \mathrm{d} t \\
& +2 \pi \sum_{n=1}^{\infty} \sigma_{-s}(n) n^{s / 2} \int_{1}^{\infty} t^{-s / 2} f(t)\left\{\left(\frac{2}{\pi} K_{s}(4 \pi \sqrt{n t})\right.\right. \\
& \left.\left.-Y_{s}(4 \pi \sqrt{n t})\right) \cos \left(\frac{\pi s}{2}\right)-J_{s}(4 \pi \sqrt{n t}) \sin \left(\frac{\pi s}{2}\right)\right\} \mathrm{d} t
\end{aligned}
$$

For $\Re s>1$,

$$
\frac{\zeta^{4}(s)}{\zeta(2 s)}=\sum_{n=1}^{\infty} \frac{d^{2}(n)}{n^{s}}
$$

Voronoi summation for $d^{2}(n)$

Theorem (C.-Dixit(2024))

Let $d(n)$ be the divisor function and $\phi(x)$ be a function satisfying some nice hypotheses, then assuming RH and the simplicity of the zeros of the zeta function, there exists a sequence of numbers $\left\{T_{n}\right\}_{n=1}^{\infty}$ with $T_{n} \rightarrow \infty$, such that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} d^{2}(n) \phi(n)=\frac{1}{\pi^{8}} \int_{0}^{\infty}\left(A_{0}+A_{1} \log x+A_{2} \log ^{2} x+\pi^{6} \log ^{3} x\right) \phi(x) \mathrm{d} x \\
& +\lim _{T_{n} \rightarrow \infty} \sum_{\left|\gamma_{m}\right| \leq T_{n}} \frac{\zeta^{4}\left(\frac{\rho_{m}}{2}\right)}{2 \zeta^{\prime}\left(\rho_{m}\right)} \int_{0}^{\infty} \phi(x) x^{\frac{\rho_{m}}{2}-1} \mathrm{~d} x \\
& +\frac{\sqrt{2}}{\pi^{2}} \sum_{n=1}^{\infty} n c(n) \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\phi(z)}{z}\left(\frac{2}{\pi} K_{0}(4 \sqrt{x})-Y_{0}(4 \sqrt{x})\right) \\
& \left(\frac{2}{\pi} K_{0}(4 \sqrt{y})-Y_{0}(4 \sqrt{y})\right) \cos \left(\frac{2 \sqrt{n x y}}{z \pi}\right) \mathrm{d} z \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

$c(n)$ is a multiplicative function defined as

$$
c\left(p^{k}\right)=\binom{k+3}{6}-p\binom{k+1}{6} .
$$

Cohen-Voronoi type Identity

Previous Results:

Voronoi and later Cohen had found an interesting identity for $d(n)$

$$
\sum_{n=1}^{\infty} d(n) \frac{x \log (x / n)}{x^{2}-n^{2}}=\frac{\pi^{2}}{4} \log x-\frac{\pi^{2}}{2} \gamma+\frac{\log \left(4 \pi^{2} x\right)}{4 x}+\sum_{n=1}^{\infty} d(n) K_{0}(4 \pi \sqrt{n x})
$$

Cohen-Voronoi type Identity

Previous Results:

Voronoi and later Cohen had found an interesting identity for $d(n)$
$\sum_{n=1}^{\infty} d(n) \frac{x \log (x / n)}{x^{2}-n^{2}}=\frac{\pi^{2}}{4} \log x-\frac{\pi^{2}}{2} \gamma+\frac{\log \left(4 \pi^{2} x\right)}{4 x}+\sum_{n=1}^{\infty} d(n) K_{0}(4 \pi \sqrt{n x})$.
By replacing $x \rightarrow i x$ and $x \rightarrow-i x$ and adding and simplifying

$$
\begin{aligned}
\frac{x}{\pi} \sum_{n=1}^{\infty} \frac{d(n)}{x^{2}+n^{2}} & =-\frac{1}{2} \log x-\gamma-\frac{1}{4 \pi x} \\
& +\sum_{n=1}^{\infty} d(n)\left(K_{0}\left(4 \pi e^{i \pi / 4} \sqrt{n x}\right)+K_{0}\left(4 \pi e^{-i \pi / 4} \sqrt{n x}\right)\right)
\end{aligned}
$$

Cohen-type identity for $d^{2}(n)$

Theorem (C.-Dixit(2024))

$$
\begin{aligned}
& \sum_{n=1}^{\infty} d^{2}(n) \frac{x \log ^{2}(x / n)}{x^{2}-n^{2}} \\
& =8 \sum_{n=1}^{\infty} c(n)\left(K_{0}(4 \pi \sqrt{n x}) K_{1}(4 \pi \sqrt{n x})-\sqrt{n x} \frac{K_{0}^{2}(4 \pi \sqrt{n x})}{4 \pi}\right) \\
& +4 R_{1}(x)+4 R_{0}(x)+\lim _{T_{n} \rightarrow \infty} \sum_{\left|\gamma_{m}\right| \leq T_{n}} R_{\rho_{m}}(x) .
\end{aligned}
$$

$$
\begin{aligned}
& R_{0}(x)=C_{2} \log ^{2} x+C_{1} \log x+C_{0} . \\
& R_{1}(x)=4 \pi^{2} \frac{\log ^{2} x}{x} . \\
& R_{\rho_{m}}=\frac{\zeta^{4}\left(\frac{\rho_{m}+1}{2}\right) \Gamma^{4}\left(\frac{\rho_{m}+1}{2}\right)}{\zeta^{\prime}\left(\rho_{m}\right) \Gamma\left(\rho_{m}\right)}\left(4 \pi^{2} x\right)^{-\frac{1+\rho_{m}}{2}} .
\end{aligned}
$$

Cohen for product of generalized divisor

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \sigma_{a}(n) \sigma_{b}(n) \frac{x\left(x^{-a}-n^{-a}\right)\left(x^{-b}-n^{-b}\right)}{x^{2}-n^{2}} \\
& =\pi^{a+b} 2^{2 a+2 b+2} \sin (\pi a / 2) \sin (\pi b / 2) \sum_{n=1}^{\infty} c(n)\left(16 \pi^{2} n x\right)^{(-a-b) / 2} \\
& \left(K_{a-1}(4 \pi \sqrt{n x}) K_{b}(4 \pi \sqrt{n x})+K_{b-1}(4 \pi \sqrt{n x}) K_{a}(4 \pi \sqrt{n x})\right. \\
& \left.+\frac{(a+b-1) \sqrt{n x}}{4 \pi} K_{b}(4 \pi \sqrt{n x}) K_{a}(4 \pi \sqrt{n x})\right)+R(x) .
\end{aligned}
$$

Voronoi summation for Liouville Lambda function

Theorem (C.-Dixit(2024))

Let $\lambda(n)$ be the Liouville Lambda function and $\phi(x)$ be a function satisfying certain nice hypothesis, then there exists a sequence of numbers $\left\{T_{n}\right\}_{n=0}^{\infty}$ with $T_{n} \rightarrow \infty$, such that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \lambda(n) \phi(n) & =\frac{1}{2 \zeta\left(\frac{1}{2}\right)} \int_{0}^{\infty} \frac{\phi(x)}{\sqrt{x}} \mathrm{~d} x \\
& +\lim _{T_{n} \rightarrow \infty} \sum_{\left|\gamma_{m}\right|<T_{n}} \frac{\zeta\left(2 \rho_{m}\right)}{\zeta^{\prime}\left(\rho_{m}\right)} \int_{0}^{\infty} \phi(x) x^{\rho_{m}-1} \mathrm{~d} x \\
& +\frac{1}{\sqrt{2 \pi}} \sum_{p=1}^{\infty} \sum_{q=1}^{\infty} \frac{\mu(q)}{\sqrt{q}} \int_{0}^{\infty} \frac{\phi(x)}{\sqrt{x}} \sin \left(\frac{p^{2} q x}{2 \pi}+\frac{\pi}{4}\right) \mathrm{d} x
\end{aligned}
$$

where $\mu(n)$ is the Mobius function and $c(n)=p \mu(q)$ for $n=p^{2} q$ and q is square-free.

Cohen-type identity for Liouville Lambda

Theorem (C.-Dixit(2024))

$$
\begin{aligned}
\frac{1}{2 \pi^{2}} \sum_{n=1}^{\infty} \lambda(n) \frac{n}{x^{2}+n^{2}} & =\frac{x^{-1 / 2}}{2 \pi \sqrt{2}} \sum_{p=1}^{\infty} \sum_{q=1}^{\infty} \frac{\mu(q)}{\sqrt{q}} e^{\frac{-\pi x q p^{2}}{2}} \\
& +\frac{\zeta(0)}{2 \zeta(1 / 2) \Gamma(1 / 2)}(2 \pi x)^{-1 / 2} \\
& +\lim _{T_{n} \rightarrow \infty} \sum_{\left|\gamma_{m}\right| \leq T_{n}} \frac{\zeta\left(2 \rho_{m}-1\right) \Gamma\left(2 \rho_{m}-1\right)}{\zeta^{\prime}\left(\rho_{m}\right) \Gamma\left(\rho_{m}\right)}(2 \pi x)^{-\rho_{m}} .
\end{aligned}
$$

Original Ramanujan-Guinand Identity

For $\alpha \beta=\pi^{2}$, we have

$$
\begin{aligned}
& \sqrt{\alpha} \sum_{n=1}^{\infty} \sigma_{-z} n^{z / 2} K_{z / 2}(2 n \alpha)-\sqrt{\beta} \sum_{n=1}^{\infty} \sigma_{-z} n^{z / 2} K_{z / 2}(2 n \beta) \\
& =\frac{1}{4} \Gamma\left(\frac{z}{2}\right) \zeta(z)\left(\beta^{\frac{1-z}{2}}-\alpha^{\frac{1-z}{2}}\right)+\frac{1}{4} \Gamma\left(\frac{-z}{2}\right) \zeta(-z)\left(\beta^{\frac{1+z}{2}}-\alpha^{\frac{1+z}{2}}\right) .
\end{aligned}
$$

Ramanujan-Guinand type Identity

For $\alpha \beta=1$
$\frac{\sqrt{2}}{2} \sum_{n=1}^{\infty} \lambda(n) n^{2} \alpha^{2} K_{1 / 2}\left(\pi n^{2} \alpha^{2}\right)$
$=\frac{\sqrt{2}}{16} \sum_{n=1}^{\infty} c(n) n^{2} \beta^{3} K_{1 / 2}\left(\frac{n^{2} \pi \beta^{2}}{8}\right)\left(K_{1 / 4}\left(\frac{n^{2} \pi \beta^{2}}{8}\right)+K_{3 / 4}\left(\frac{n^{2} \pi \beta^{2}}{8}\right)\right)$
$+\frac{\Gamma(1 / 2)}{2 \zeta(1 / 2) \Gamma(1 / 4)}(\sqrt{\pi \alpha})^{-1 / 2}+\lim _{T_{m} \rightarrow \infty} \sum_{\left|\gamma_{m}\right| \leq T_{n}} \frac{\zeta\left(2 \rho_{m}\right) \Gamma\left(\rho_{m}\right)}{\zeta^{\prime}\left(\rho_{m}\right) \Gamma\left(\rho_{m} / 2\right)}(\sqrt{\pi \alpha})^{-\rho_{m}}$.

Potential Questions

- How can Voronoi summation formula for $d^{2}(n)$ be used for reducing the error term for $\sum_{n \leq x} d^{2}(n)$?
- How can we use Voronoi summation formula for $\lambda(n)$ to show infinitely many sign changes in $\sum_{n \leq x} \lambda(n)$?
- How can one use Cohen type formulas to derive the Voronoi summation formulas?

Thank You

