Prime Number Error Terms

Nathan Ng

Comparative Prime Number Theory Symposium CRG: L-functions in Analytic Number Theory University of British Columbia June 17, 2024

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Summatory functions

$$
\psi(x)=\sum_{n\leq x}\Lambda(n),\quad M(x)=\sum_{n\leq x}\mu(n),\quad L(x)=\sum_{n\leq x}\lambda(n).
$$

• Von Koch (1905) RH implies

$$
\frac{\psi(x)-x}{\sqrt{x}}=O(\log^2 x).
$$

• Littlewood (1914)

$$
\frac{\psi(x)-x}{\sqrt{x}} = \Omega_{\pm}(\log\log\log x).
$$

• Bui-Florea (2023) RH implies

$$
\frac{M(x)}{\sqrt{x}} = O\left(\exp(\sqrt{\log x}(\log \log x)^{\frac{7}{8}+\varepsilon}\right)
$$

• Hurst (2018)

$$
\limsup_{x\to\infty}\frac{M(x)}{\sqrt{x}} > 1.826054 \text{ and } \liminf_{x\to\infty}\frac{M(x)}{\sqrt{x}} < -1.837625.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Error term Conjectures

Conjecture (Montgomery, 1980)

$$
\overline{\lim}_{x\to\infty}\frac{\psi(x)-x}{\sqrt{x}(\log\log\log x)^2}=\pm\frac{1}{2\pi}.
$$

Conjecture (Ng, 2012)

$$
\overline{\lim}_{x \to \infty} \frac{M(x)}{\sqrt{x} (\log \log \log x)^{\frac{5}{4}}} = \pm \frac{8a}{5} . \tag{1}
$$

•
$$
a = \frac{1}{\sqrt{\pi}} e^{3\zeta'(-1) - \frac{11}{12} \log 2} \prod_{p} \left((1 - p^{-1})^{\frac{1}{4}} \sum_{k=0}^{\infty} \left(\frac{\Gamma(k - \frac{1}{2})}{k! \Gamma(-\frac{1}{2})} \right)^2 p^{-k} \right).
$$

- $a = 0.16712...$ arises from a conjecture of Hughes, Keating, O'Connell.
- Gonek (1990's) conjectured [\(1\)](#page-2-0) with an unspecified constant.

Conjecture (LI: Linear Independence, Wintner 1935)

The positive ordinates of the zeros of the Riemann zeta function are linearly independent over the rational numbers.

Conjecture (ELI: Effective Linear Independence)

Let $\{\gamma\}$ denote the set of the ordinates of the non-trivial zeros of the Riemann zeta function. For every $\varepsilon > 0$ there exists a positive constant C_{ε} such that for all real numbers $T > 2$ we have

$$
\Big|\sum_{0<\gamma\leq T}\ell_\gamma\gamma\Big|\geq C_\varepsilon e^{-T^{1+\varepsilon}},
$$

where the ℓ_{γ} are integers, not all zero, such that $|\ell_{\gamma}| \leq N(T)$, and $N(T)$ is the number of non-trivial zeros of $\zeta(s)$ with imaginary part in $(0, T]$.

- Conjectured by Monach-Montgomery (see Montgomery-Vaughan p. 483)
- Heuristic arguments: Damien Roy (2018), Lamzouri (2023).

Omega results for error terms

Theorem (Lamzouri, 2023) Assume ELI. Then we have

$$
\limsup_{x\to\infty}\frac{\psi(x)-x}{\sqrt{x}(\log\log\log x)^2}\geq \frac{1}{2\pi}\text{ and }\liminf_{x\to\infty}\frac{\psi(x)-x}{\sqrt{x}(\log\log\log x)^2}\leq -\frac{1}{2\pi}.
$$

Theorem (Lamzouri, 2023) Assume ELI,

$$
\sum_{0<\gamma< T}\frac{1}{|\zeta'(\rho)|}\ll T(\log T)^{1/4}, \ \ \text{and} \ \sum_{0<\gamma< T}\frac{1}{|\zeta'(\rho)|^2}\ll T^{1.267}.
$$

Then we have

$$
M(x) = \Omega_{\pm} \left(\sqrt{x} (\log \log \log x)^{5/4} \right).
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Explicit formulae and random sums

• If
$$
\sum_{0 < \gamma < T} \frac{1}{|\zeta'(\rho)|^2} \ll T^{1.999}
$$
, then

$$
\frac{M(x)}{\sqrt{x}} = 2\Re\left(\sum_{0 < \gamma \leq x^2} \frac{x^{i\gamma}}{\rho\zeta'(\rho)}\right) + O(1) \text{ for } 2 \leq x \leq X.
$$

 $\bullet\,$ Variable change $x=e^t$

$$
\frac{M(e^t)}{\sqrt{e^t}} \sim 2 \mathfrak{Re}\left(\sum_{0 < \gamma \leq X^2} \frac{e^{t i \gamma}}{\rho \zeta'(\rho)}\right) = 2 \mathfrak{Re}\left(\sum_{0 < \gamma \leq X^2} \frac{e^{t i \gamma + i \beta \gamma}}{|\rho \zeta'(\rho)|}\right).
$$

• If LI is true, Kronecker-Weyl theorem suggests sum behaves like the random sum

$$
\mathbf{X}(\underline{\theta}) = 2\Re\mathfrak{e}\left(\sum_{0 < \gamma \leq X^2} \frac{e^{2\pi i \theta_{\gamma}}}{|\rho\zeta'(\rho)|}\right)
$$

KID KØD KED KED E 1990

where $\underline{\theta}=(\theta_{\gamma_1},\theta_{\gamma_2},\ldots)\in\mathbb{T}^{\mathsf{N}}$ and $\mathsf{N}\in\mathbb{N}.$

Explicit formula and general sums over zeros

Let

$$
\Phi_{X,\mathsf{r}}(x) := \mathfrak{Re}\left(\sum_{0 < \gamma \leq X} x^{i\gamma} r_{\gamma}\right)
$$

where $\mathbf{r} = \{r_{\gamma}\}_{\gamma>0}$ is a complex sequence satisfying: **A1**: There exist $\alpha_+, \alpha_-, A > 0$ such that

$$
\alpha_{-}(\log T)^{A} \leq \sum_{0 < \gamma \leq T} |r_{\gamma}| \leq \alpha_{+}(\log T)^{A} \text{ as } T \to \infty.
$$

A2:

$$
\sum_{0<\gamma\leq T}\gamma|r_{\gamma}|=o(T(\log T)^{A})
$$

A3:

$$
\sum_{0<\gamma\leq T}\gamma^2|r_\gamma|^2\ll T^\theta \text{ where } \theta<1.999.
$$

।
ଏଠାତ ∰ାଏ ଏ≘ ଏକ ଏକ ଏବ

• $\frac{\psi(x)-x}{\sqrt{x}} \approx \Phi_{X,\mathsf{r}}(x)$ when $r_{\gamma} = \frac{1}{\rho}$. • $\frac{M(x)}{\sqrt{x}} \approx \Phi_{X,\mathbf{r}}(x)$ when $r_{\gamma} = \frac{1}{\rho \zeta'(\rho)}$. • $\frac{L(x)}{\sqrt{x}} \approx \Phi_{X,\mathbf{r}}(x)$ when $r_{\gamma} = \frac{\zeta(2\rho)}{\rho \zeta'(\rho)}$.

General Theorem 1:
$$
\Phi_{X,\mathbf{r}}(x) := \Re\mathfrak{e}\left(\sum_{0<\gamma\leq X}x^{i\gamma}r_{\gamma}\right)
$$

Theorem (Lamzouri, 2023)

Assume ELI. Let $\{r_{\gamma}\}_{\gamma>0}$ be a sequence of complex numbers satisfying A1, A2, A3'. Let X be large. There exist positive constants C_1 and C_2 such that

$$
\max_{x\in[2,X]} \Phi_{X^2,\mathbf{r}}(x) \geq C_1(\log\log\log X)^A.
$$

and

$$
\min_{x\in[2,X]}\Phi_{X^2,r}(x)\leq -C_2(\log\log\log X)^A.
$$

KORK ERKER ADAM ADA

• **A1**:
$$
\sum_{0 < \gamma \leq T} |r_{\gamma}| \asymp (\log T)^{A}
$$

• A2:
$$
\sum_{0 < \gamma \leq T} \gamma |r_{\gamma}| = o(T(\log T)^{A})
$$

• A3':
$$
\sum_{0 < \gamma \leq T} \gamma^2 |r_\gamma|^2 \ll T^\theta
$$
 where $\theta < 1.267$

General Theorem 2:
$$
\Phi_{X,\mathbf{r}}(x) := \Re\mathfrak{e}\left(\sum_{0<\gamma\leq X}x^{i\gamma}r_{\gamma}\right)
$$

Theorem (Ng, 2024)

Assume ELI. Let $\{r_{\gamma}\}_{\gamma>0}$ be a sequence of complex numbers satisfying A1, A2, A3. Let X be large. Then

$$
\max_{x \in [2,X]} \Phi_{X^2,\mathsf{r}}(x) \ge \alpha_-\bigl(\log\log\log X\bigr)^A
$$

and

$$
\min_{x \in [2,X]} \Phi_{X^2}(x) \leq -\alpha_{-}(\log \log \log X)^{A}.
$$

- \bullet $\,$ A1: $\alpha_{-}(\log\,T)^A \leq \sum_{0<\gamma\leq\,T}|r_{\gamma}| \leq \alpha_{+}(\log\,T)^A$
- A2: $\sum_{0<\gamma\leq T} \gamma |r_\gamma| = o\bigl(T(\log T)^A\bigr)$
- \bullet A3: $\sum_{0<\gamma\leq T}\gamma^{2}|r_{\gamma}|^{2}\ll T^{\theta}$ where $\theta < 2$

Remarks: (i) Minor modifications of Lamzouri's result. Better lower bound for $I_0(t)$ and adjustment of various parameters in proof. (ii) Lamzouri had unspecified constants C_1 , C_2 instead of $\pm \alpha_-\$. (iii) Weakened condition in A3' from θ < 1.267 to θ < 2 using idea of Meng.

Application to $M(x)$

Theorem (Ng, 2024) Assume ELI,

$$
\sum_{0<\gamma< T}\frac{1}{|\zeta'(\rho)|}\sim aT(\log T)^{1/4},\quad\text{and}\quad\sum_{0<\gamma< T}\frac{1}{|\zeta'(\rho)|^2}\ll T^{1.999}.
$$

Then we have

$$
\limsup_{x \to \infty} \frac{M(x)}{\sqrt{x} (\log \log \log x)^{\frac{5}{4}}} \ge \frac{8a}{5} \text{ and } \liminf_{x \to \infty} \frac{M(x)}{\sqrt{x} (\log \log \log x)^{\frac{5}{4}}} \le -\frac{8a}{5}
$$

- Apply previous theorem with $r_{\gamma} = \frac{1}{\rho \zeta'(\rho)}$.
- $\frac{8}{5} = \frac{4}{5} \cdot 2$ $\frac{4}{5}$ partial summation, 2 zero symmetry.
- \bullet Weak Mertens Conjecture $\implies \sum_{0<\gamma<\mathcal{T}}\frac{1}{|\zeta'(\rho)|^2}=o(\mathcal{T}^2)$
- Bui-Florea-Milinovich. RH $\implies \sum_{\substack{0 < \gamma < r \\ \gamma \in S}}$ $\frac{1}{|\zeta'(\rho)|^2} = O(\, \mathcal{T}^{1.51})$ for certain $S.$

Application to $L(x) = \sum_{n \leq x} \lambda(n)$

Theorem (Ng, 2024) Assume ELI,

$$
\sum_{0<\gamma< T}\frac{|\zeta(2\rho)|}{|\zeta'(\rho)|}\sim bT(\log T)^{1/4}, \text{ and } \sum_{0<\gamma< T}\frac{1}{|\zeta'(\rho)|^2}\ll T^{1.999}.
$$

Then we have

$$
\limsup_{x \to \infty} \frac{L(x)}{\sqrt{x} (\log \log \log x)^{\frac{5}{4}}} \geq \frac{8b}{5} \text{ and } \liminf_{x \to \infty} \frac{L(x)}{\sqrt{x} (\log \log x)^{\frac{5}{4}}} \leq -\frac{8b}{5}
$$

• Apply previous theorem with $r_{\gamma} = \frac{\zeta(2\rho)}{\rho \zeta'(\rho)}$.

Conjecture (Akbary, Ng, Yang Li, 2012)

$$
b=a\cdot\sum_{n=1}^{\infty}\frac{d_{\frac{1}{2}}(n)^2}{n^2}
$$

Discrete moment conjectures

Conjecture (Hughes, Keating, O'Connell, 2000) For $0 \leq s \leq 3$.

$$
\sum_{0<\gamma_n< T}\frac{1}{|\zeta'(\rho)|^s}\sim \frac{G^2(2-\frac{s}{2})}{G(3-s)}\mathsf{a}(-\tfrac{s}{2})\frac{T}{2\pi}\Big(\log\frac{T}{2\pi}\Big)^{(\frac{s}{2}-1)^2}
$$

where G is Barnes' function, $a(x)=\prod_p(1-\frac{1}{p})^{x^2}\sum_{m=0}^{\infty}\left(\frac{\Gamma(m+x)}{m!\Gamma(x)}\right)^2p^{-m}.$

Conjecture (Akbary, Ng, Yang Li, 2012) For $0 \leq s \leq 3$.

$$
\sum_{0\leq\gamma\leq T}\Big|\frac{\zeta(2\rho)}{\zeta'(\rho)}\Big|^s\sim\frac{G^2(2-\frac{s}{2})}{G(3-s)}a(-\frac{s}{2})\Big(\sum_{n=1}^{\infty}\frac{d_{s/2}(n)}{n^2}\Big)\frac{T}{2\pi}\Big(\log\frac{T}{2\pi}\Big)^{(\frac{s}{2}-1)^2}
$$

where $d_k(\cdot)$ is the k-th divisor function.

$$
\sum_{0 \leq \gamma \leq T} \left| \frac{\zeta(2\rho)}{\zeta'(\rho)} \right| \sim b \mathcal{T}(\log T)^{\frac{1}{4}} \text{ and } \sum_{0 \leq \gamma_n \leq T} \left| \frac{\zeta(2\rho)}{\zeta'(\rho)} \right|^2 \sim \frac{T}{2\pi}.
$$

A general conjecture

Let φ be real-valued with an "explicit formula"

$$
\varphi(t)=c_0+2\Re\mathfrak{e}\sum_{0<\gamma_n< T}r_{\gamma_n}e^{i\gamma_nt}+\mathcal{E}(t,T)
$$

where $c_0 \in \mathbb{R}$, $\mathcal{E}(t, T)$ satisfies a certain mean square bound, and

$$
\sum_{0<\gamma_n\leq T}2|r_{\gamma_n}|\sim \alpha(\log T)^{\beta}.
$$

Conjecture (Akbary, Ng, Shahabi, 2012)

$$
\limsup_{x\to\infty}\frac{\varphi(\log x)}{(\log\log\log x)^\beta}=\alpha\,\,\text{and}\,\,\liminf_{x\to\infty}\frac{\varphi(\log x)}{(\log\log\log x)^\beta}=-\alpha.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Random sums and large deviations

Let $\mathbf{r} = \{r_{\gamma_n}\}_{n=1}^\infty$ and consider the associated random sum

$$
\mathbf{X}_{\mathbf{r}}=2\sum_{n=1}^{\infty}r_{\gamma_n}\cos(2\pi\theta_n)
$$

where $\theta_n \in [0,1]$ are IID random variables. Assume $\sum_{0 \le \gamma_n \le T} 2|r_{\gamma_n}| \sim \alpha(\log T)^{\beta}$ and 4 other conditions on r_{γ_n} , γ_n . $(r_{\gamma_n}$ NOT NECESSARILY DECREASING.)

Theorem (Akbary, Ng, Majid Shahabi, 2012, unpublished) Let $\varepsilon > 0$. Then for $V > V_{\varepsilon}$, we have

$$
\exp\bigg(-\exp\Big(\big(\alpha^{\frac{1}{\beta}}+\varepsilon\big)V^{\frac{1}{\beta}}\Big)\bigg)\leq P\big(\mathbf{X}_\mathsf{r}\geq V\big)\leq \exp\bigg(-\exp\Big(\big(\alpha^{\frac{1}{\beta}}-\varepsilon\big)V^{\frac{1}{\beta}}\Big)\bigg).
$$

- Upper bound: Montgomery, Odlyzko (Acta. Arith., 1988), Theorem 2 (Chernoff's inequality).
- Lower bound: Montgomery (Queen's Conf., 1980), Sec. 3, Theorem 1.
- \bullet Shahabi's M.Sc. thesis has more precise results for $P(\mathsf{X}_\mathsf{r}\geq V)$ similar to Granville-Lamzouri (2021).
- Theorem shows why we don't expect to improve the lower bounds in omega theorems.**KORKARYKERKER POLO**

Lamzouri's argument

1. Let $F(t, T) = \sum_{0 < \gamma \leq T} \cos(\gamma t + \beta_{\gamma}) |r_{\gamma}|.$ 2. For X large show there exists $t \in [1, X]$.

$$
F(t, e^{2X}) = \sum_{0 < \gamma \leq e^{2X}} \cos(\gamma t + \beta_{\gamma}) |r_{\gamma}| \geq (\alpha_{-} - \varepsilon)(\log \log X)^{2}.
$$

Variable change $e^X \to X$, $t = \log x$ establishes Theorem.

3. ELI implies

$$
\frac{1}{X}\int_1^X \exp(sF(t,T)) dt \sim \mathbb{E}\Big(\exp\Big(s\sum_{0<\gamma\leq T}|r_\gamma|\cos(\theta_\gamma)\Big)\Big) \qquad (2)
$$

for $\mathcal{T} = (\log X)^{1-\varepsilon}$ (random moment generating function).

- 4. Probability ideas show RHS is large. Independence, bounds for I_0 Bessel functions, and insert lower bound for $\sum_{0<\gamma\leq T}|r_\gamma|.$
- 5. Deduce from [\(2\)](#page-14-0) that

$$
F(t, T) \geq (\alpha_- - \varepsilon') (\log T)^A
$$

for many values of $t\in [1,X]$ for $\mathcal{T}=(\log X)^{1-\varepsilon}.$ **KORKAR KERKER DRAM**

Lamzouri's argument cont'd

- 6. Use a smoothing to relate $F(t,(\log X)^{1-\varepsilon})$ to an average of $F(t+u,X)$ where $|u| \leq (\log X)^A$.
- 7. Show that $F(t+u,e^{2X})-F(t+u,X)$ is small on average for $t\in[1,X].$ This allows one to obtain large values of $F(t + u, e^{2X})$ as desired. Requires following lemma.

Lemma (Ng, 2024)

Let $\{r_{\gamma}\}_{\gamma>0}$ be a sequence of complex numbers satisfying A3:

$$
\sum_{0<\gamma\leq T}\gamma^2|r_\gamma|^2\ll T^\theta\text{ where }\theta<2.
$$

There exists a positive constant $\alpha = \alpha(\theta)$, such that for all $X_2 > X_1 > 1$ we have

$$
\sum_{X_1<\gamma_1,\gamma_2\leq X_2}|r_{\gamma_1}r_{\gamma_2}|\min\left(1,\frac{1}{|\gamma_1-\gamma_2|}\right)\ll X_1^{-\alpha}.
$$

• Variant of a lemma of Akbary, Ng, Shahabi (2014) using an idea of Meng (2017).

References

- A. Akbary, N. Ng, and M. Shahabi, Limiting distributions of the classical error terms of prime number theory, QJM, 2014.
- A. Akbary, N. Ng, and M. Shahabi, *Error terms in prime number theory and large* deviations of sums of independent random variables, preprint.
- A. Granville, Y. Lamzouri, Large deviations of sums of random variables. Lith. Math. J., 2021.
- C. P. Hughes, J. P. Keating and N. O'Connell, Random matrix theory and the derivative of the Riemann zeta function. Proc. Roy. Soc. London Ser. A, 2000
- Y. Lamzouri, An effective Linear Independence conjecture for the zeros of the Riemann zeta function and applications, <https://arxiv.org/abs/2311.04860>, 2023.
- X. Meng, The distribution of k-free numbers and the derivative of the Riemann zeta-function, MPCPS, 2017.
- W. R. Monach, Numerical investigation of several problems in number theory, Ph. D. Thesis, University of Michigan, 1980.
- H. L. Montgomery, The zeta function and prime numbers, Proceedings of the Queen's Number Theory Conference, 1979.
- H. L. Montgomery and A. M. Odlyzko, Large deviations of sums of independent random variables, Acta Arith., 1988.
- N. Ng, The summatory function of the Möbius function, PLMS, 2004.
- Majid Shahabi, The distribution of the classical error terms in prime number theory, Master's thesis, University of Lethbridge, 20[12.](#page-15-0)