Spacing statistics of Farey Sequence

Bittu Chahal

Department of Mathematics IIIT Delhi

(Based on joint work with Sneha Chaubey)

Comparative Prime Number Theory Symposium University of British Columbia Vancouver, Canada

June 21, 2024

- 3 ▶

Bittu Chahal (IIITD)

문 문 문

Let \mathcal{F} be a finite set of cardinality N in [0, 1]. The pair correlation measure $\mathcal{R}_{\mathcal{F}}(I)$ of a finite interval $I \subset \mathbb{R}$ is defined by

$$\frac{1}{N}\#\{(x,y)\in\mathcal{F}^2:x\neq y,\ x-y\in\frac{1}{N}I+\mathbb{Z}\}.$$

Let \mathcal{F} be a finite set of cardinality N in [0, 1]. The pair correlation measure $\mathcal{R}_{\mathcal{F}}(I)$ of a finite interval $I \subset \mathbb{R}$ is defined by

$$\frac{1}{N}\#\{(x,y)\in\mathcal{F}^2:x\neq y,\ x-y\in\frac{1}{N}I+\mathbb{Z}\}.$$

The limiting pair correlation measure of an increasing sequence $(\mathcal{F}_n)_n$, is given (if it exists) by

$$\mathcal{R}(I) = \lim_{n\to\infty} \mathcal{R}_{\mathcal{F}_n}(I).$$

Let \mathcal{F} be a finite set of cardinality N in [0, 1]. The pair correlation measure $\mathcal{R}_{\mathcal{F}}(I)$ of a finite interval $I \subset \mathbb{R}$ is defined by

$$\frac{1}{N}\#\{(x,y)\in\mathcal{F}^2:x\neq y,\ x-y\in\frac{1}{N}I+\mathbb{Z}\}.$$

The limiting pair correlation measure of an increasing sequence $(\mathcal{F}_n)_n$, is given (if it exists) by

$$\mathcal{R}(I) = \lim_{n \to \infty} \mathcal{R}_{\mathcal{F}_n}(I).$$

lf

$$\mathcal{R}(I)=\int_{I}g(x)dx,$$

then g is called the limiting pair correlation function of $(\mathcal{F}_n)_n$.

Montgomery's pair correlation conjecture

3 N 3

[Montgomery, 1973] conjectured that, for any fixed $\beta > 0$,

$$N(\beta, T) := \sum_{\substack{0 < \gamma, \gamma' \leq T \\ 0 < \gamma - \gamma' \leq \frac{2\pi\beta}{\log T}}} 1 \sim \frac{T \log T}{2\pi} \int_0^\beta \left(1 - \left(\frac{Sin\pi u}{\pi u}\right)^2 \right) du,$$

 $\text{ as } T \to \infty.$

[Montgomery, 1973] conjectured that, for any fixed $\beta > 0$,

$$N(\beta, T) := \sum_{\substack{0 < \gamma, \gamma' \leq T \\ 0 < \gamma - \gamma' \leq \frac{2\pi\beta}{\log T}}} 1 \sim \frac{T \log T}{2\pi} \int_0^\beta \left(1 - \left(\frac{Sin\pi u}{\pi u}\right)^2 \right) du,$$

as $T \to \infty$.

[Montgomery, 1973] For $\alpha \in \mathbb{R}$ and $T \geq 2$ defined

$$F(\alpha) := F(\alpha, T) = \frac{2\pi}{T \log T} \sum_{0 < \gamma, \gamma' \le T} T^{i\alpha(\gamma - \gamma')} w(\gamma - \gamma'),$$

where $w(u) = 4/(4 + u^2)$.

Montgomery's pair correlation conjecture

3 N 3

He proved assuming RH that if $\alpha \in \mathbb{R}$ and $T \ge 2$ then $F(\alpha)$ is real, and $F(\alpha) = F(-\alpha)$. If $T > T_0(\epsilon)$ then $F(\alpha) \ge -\epsilon$ for all α . For fixed α satisfying $0 \le \alpha < 1 - \epsilon$ we have

$$F(\alpha) = (1 + o(1))T^{-2\alpha} \log T + \alpha + o(1)$$
, as $T \to \infty$.

[Montgomery, 1973] conjectured that for $\alpha \geq 1$,

$$F(\alpha) = 1 + o(1).$$

Bittu Chahal (IIITD)

Spacing statistics of Farey Sequence

June 21, 2024

• • • • • • • •

▶ < ≣ ▶

3

Definition

Let Q be a positive integer and denote by \mathcal{F}_Q the set of irreducible fractions in [0, 1] whose denominator does not exceed Q,

$${\mathcal F}_Q = \left\{ rac{\mathsf{a}}{q} : 0 \leq \mathsf{a} \leq q \leq Q, (\mathsf{a},q) = 1
ight\}.$$

Definition

Let Q be a positive integer and denote by \mathcal{F}_Q the set of irreducible fractions in [0, 1] whose denominator does not exceed Q,

$${\mathcal F}_Q = \left\{ rac{{\mathsf a}}{q} : 0 \le {\mathsf a} \le q \le Q, ({\mathsf a},q) = 1
ight\}.$$

Example

$$\mathcal{F}_5 = \left\{ \frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1} \right\}.$$

Definition

Let Q be a positive integer and denote by \mathcal{F}_Q the set of irreducible fractions in [0, 1] whose denominator does not exceed Q,

$${\mathcal F}_Q = \left\{ rac{{\mathsf a}}{q} : 0 \leq {\mathsf a} \leq q \leq Q, ({\mathsf a},q) = 1
ight\}.$$

Example

$$\mathcal{F}_5 = \left\{ \frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1} \right\}.$$

• The cardinality of \mathcal{F}_Q

$$N(Q) = 1 + \sum_{q=1}^{Q} \phi(q) = rac{3Q^2}{\pi^2} + {
m O}\left(Q \log Q
ight).$$

Bittu Chahal (IIITD) Spa

• • • • • • • •

글 🕨 🔺 글 🕨

3

• The Farey sequence is uniformly distributed in [0,1].

3 N 3

- The Farey sequence is uniformly distributed in [0, 1].
- [Franel, 1924]

$$RH \iff \sum_{j=1}^{N(Q)} |\delta(j)| = O\left(Q^{1/2+\epsilon}\right),$$

where

$$\delta(j) = \gamma_j - \frac{j}{N(Q)}.$$

< 1 k

3. 3

The Farey sequence is uniformly distributed in [0, 1].[Franel, 1924]

$$RH \iff \sum_{j=1}^{N(Q)} |\delta(j)| = O\left(Q^{1/2+\epsilon}\right),$$

where

$$\delta(j) = \gamma_j - \frac{j}{N(Q)}.$$

• [Landau, 1924]

$$RH \iff \sum_{j=1}^{N(Q)} \delta^2(j) = O\left(Q^{-1+\epsilon}\right).$$

∃ →

Pair correlation of Farey fractions

Bittu Chahal	(IIITD)
--------------	---------

문 문 문

Theorem (Boca and Zaharescu, 2005)

The pair correlation function of $(\mathcal{F}_Q)_Q$ is given by

$$g(\lambda) = rac{6}{\pi^2 \lambda^2} \sum_{1 \leq k < rac{\pi^2 \lambda}{3}} \phi(k) \log rac{\pi^2 \lambda}{3k}.$$

Moreover, as $\lambda \to \infty$

$$g(\lambda) = 1 + O(\lambda^{-1}).$$

э

- [Xiong and Zaharescu, 2008] studied the pair correlation of Farey fractions with prime denominators.
- [Xiong and Zaharescu, 2011] studied the pair correlation of Farey fractions with denominators coprime to B_Q .
- [Boca and Siskaki, 2022] studied the pair correlation of Farey fractions with denominators in some arithmetic progression.
- [.B and Chaubey, 2024] studied the pair correlation of Farey fractions with square-free denominators.

3 N 3

• For a fixed vector $\mathbf{c} = (c_n, c_{n-1}, \dots, c_1) \in \mathbb{Z}^n$ with $c_n \neq 0, c_i \geq 0$ for all *i*, and $gcd(c_n, c_{n-1}, \dots, c_1) = 1$, let $P(x) = c_n x^n + \dots + c_1 x$, we define

$$V(\mathbf{c}) := \left\{ (a,b) \in \mathbb{N}^2 \; \middle| \; egin{array}{c} b = qP(a) ext{ for some } q \in \mathbb{Q}^+, \; \nexists \; (a',b') \in \mathbb{N}^2 \ ext{ such that } b' = q'P(a'), \; ext{and } a' < a, \; b' < b \end{array}
ight\}$$

• For a fixed vector $\mathbf{c} = (c_n, c_{n-1}, \dots, c_1) \in \mathbb{Z}^n$ with $c_n \neq 0, c_i \geq 0$ for all *i*, and $gcd(c_n, c_{n-1}, \dots, c_1) = 1$, let $P(x) = c_n x^n + \dots + c_1 x$, we define

$$V(\mathbf{c}) := \left\{ (a,b) \in \mathbb{N}^2 \; \middle| \; egin{array}{c} b = qP(a) ext{ for some } q \in \mathbb{Q}^+, \; \nexists \; (a',b') \in \mathbb{N}^2 \ ext{ such that } b' = q'P(a'), \; ext{and } a' < a, \; b' < b \end{array}
ight\}$$

 $V(1)=\{(a,b)\in\mathbb{N}^2\mid \gcd(a,b)=1\}.$

٥

• For a fixed vector $\mathbf{c} = (c_n, c_{n-1}, \dots, c_1) \in \mathbb{Z}^n$ with $c_n \neq 0, c_i \geq 0$ for all *i*, and $gcd(c_n, c_{n-1}, \dots, c_1) = 1$, let $P(x) = c_n x^n + \dots + c_1 x$, we define

$$\mathcal{W}(\mathbf{c}) := \left\{ (a,b) \in \mathbb{N}^2 \; \middle| \; egin{array}{c} b = q P(a) ext{ for some } q \in \mathbb{Q}^+, \; \nexists \; (a',b') \in \mathbb{N}^2 \ ext{ such that } b' = q' P(a'), \; ext{and } a' < a, \; b' < b \end{array}
ight\}$$

$$V(1)=\{(a,b)\in \mathbb{N}^2 \mid \mathsf{gcd}(a,b)=1\}.$$

Denote

٥

$$S = \{(a, b) \in \mathbb{N}^2 | \operatorname{gcd}(P(a), b) = 1\}.$$

• $S \subseteq V(\mathbf{c})$.

Polynomial Farey fractions

Let $\mathbf{c} = (c_1, \cdots, c_n) \in \mathbb{Z}^n$ be a fixed vector and $P(x) = c_n x^n + \cdots + c_1 x$. Define

$${\mathcal F}_{Q,P}:=\left\{rac{{\mathsf a}}{q}\mid 1\leq {\mathsf a}\leq q\leq Q, \; \operatorname{\mathsf{gcd}}(P({\mathsf a}),q)=1
ight\}.$$

<20 € ► 20

Polynomial Farey fractions

Let $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{Z}^n$ be a fixed vector and $P(x) = c_n x^n + \dots + c_1 x$. Define

$$\mathcal{F}_{Q,P} := \left\{ rac{a}{q} \mid 1 \leq a \leq q \leq Q, \; \operatorname{gcd}(P(a),q) = 1
ight\}.$$

If P(x) = x(x+1) then for instance

$$\mathcal{F}_{5,P} = \left\{ rac{1}{5}, rac{1}{3}, rac{2}{5}, rac{3}{5}, 1
ight\}.$$

э

Polynomial Farey fractions

Let $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{Z}^n$ be a fixed vector and $P(x) = c_n x^n + \dots + c_1 x$. Define

$$\mathcal{F}_{Q,P} := \left\{ rac{\mathsf{a}}{q} \mid 1 \leq \mathsf{a} \leq q \leq Q, \; \operatorname{\mathsf{gcd}}(P(\mathsf{a}),q) = 1
ight\}.$$

If P(x) = x(x+1) then for instance

$$\mathcal{F}_{5,P} = \left\{ \frac{1}{5}, \frac{1}{3}, \frac{2}{5}, \frac{3}{5}, 1 \right\}.$$

The cardinality of $\mathcal{F}_{Q,P}$

$$\mathcal{N}_{Q,P} = \#\mathcal{F}_{Q,P} = \frac{Q^2}{2} \prod_{p} \left(1 - \frac{f_P(p)}{p^2}\right) + O\left(Q^{1+\epsilon}\right),$$

where $f_P(p) = |\{1 \le d \le p | P(d) \equiv 0 \pmod{p}\}|.$

Pair correlation of Polynomial Farey fractions

Bittu Chahal	(IIITD)
--------------	---------

3 N 3

Pair correlation of Polynomial Farey fractions

Theorem (.C, Chaubey, 2024)

Let $\mathbf{c} = (c_1, c_2) \in \mathbb{Z}_{>0}^2$ be a fixed vector and $P(x) = c_2 x^2 + c_1 x$. The limiting pair correlation measure of the sequence $(\mathcal{F}_{Q,P})_Q$ under the GRH exists and is given by

$$\mathcal{S}(\Lambda) \ll \frac{(c_1 c_2)^{\epsilon}}{\beta_P^{1+\epsilon}} \int_0^{\Lambda} \frac{1}{\lambda^{1-\epsilon}} \sum_{1 \leq m < \frac{2\lambda}{\beta_P}} h_1(m) \log\left(\frac{2\lambda}{m\beta_P}\right) d\lambda_p$$

Pair correlation of Polynomial Farey fractions

Theorem (.C, Chaubey, 2024)

Let $\mathbf{c} = (c_1, c_2) \in \mathbb{Z}^2_{>0}$ be a fixed vector and $P(x) = c_2 x^2 + c_1 x$. The limiting pair correlation measure of the sequence $(\mathcal{F}_{Q,P})_Q$ under the GRH exists and is given by

$$\mathcal{S}(\Lambda) \ll \frac{(c_1 c_2)^{\epsilon}}{\beta_P^{1+\epsilon}} \int_0^{\Lambda} \frac{1}{\lambda^{1-\epsilon}} \sum_{1 \leq m < \frac{2\lambda}{\beta_P}} h_1(m) \log\left(\frac{2\lambda}{m\beta_P}\right) d\lambda$$

for any $\Lambda > 0$, where $\beta_P = \prod_p \left(1 - \frac{f_P(p)}{p^2}\right)$, $f_P(p) = |\{1 \le d \le p : P(d) \equiv 0 \pmod{p}\}|$ and

$$h_1(m) = rac{1}{m^{1+\epsilon}} \sum_{\substack{g_1 \mid m \ g_2 \mid g_1 \\ g_1 \mid c_1 \ g_2 \mid c_1}} \sigma\left(rac{m}{g_1g_2}\right) \ll 1.$$

Theorem (.C, Chaubey, 2024)

Let $\nu \geq 2$ and let $\mathbf{c} = (c_1, \dots, c_{\nu}) \in \mathbb{Z}^{\nu}$ be a fixed vector and $P(x) = x\mathcal{P}'(x)$, where $\mathcal{P}'(x) = c_{\nu-1}x^{\nu-1} + \dots + c_2x + c_1$. The limiting pair correlation measure of the sequence $(\mathcal{F}_{Q,P})_Q$ under the GRH exists and is given by

$$\mathcal{S}(\Lambda) \ll rac{1}{eta_P^{1+\epsilon}} \int_0^\Lambda rac{1}{\lambda^{1-\epsilon}} \sum_{1 \leq m < rac{2\Lambda}{eta_P}} h_2(m) \log\left(rac{2\lambda}{meta_P}
ight) d\lambda,$$

Theorem (.C, Chaubey, 2024)

Let $\nu \geq 2$ and let $\mathbf{c} = (c_1, \dots, c_{\nu}) \in \mathbb{Z}^{\nu}$ be a fixed vector and $P(x) = x\mathcal{P}'(x)$, where $\mathcal{P}'(x) = c_{\nu-1}x^{\nu-1} + \dots + c_2x + c_1$. The limiting pair correlation measure of the sequence $(\mathcal{F}_{Q,P})_Q$ under the GRH exists and is given by

$$\mathcal{S}(\Lambda) \ll rac{1}{eta_P^{1+\epsilon}} \int_0^\Lambda rac{1}{\lambda^{1-\epsilon}} \sum_{1 \leq m < rac{2\Lambda}{eta_P}} h_2(m) \log\left(rac{2\lambda}{meta_P}
ight) d\lambda$$

for any $\Lambda > 0$, where $\beta_P = \prod_p \left(1 - \frac{f_P(p)}{p^2}\right)$, $f_P(p) = |\{1 \le d \le p : P(d) \equiv 0 \pmod{p}\}| \text{ and } h_2(m) = \frac{\sigma(m)}{m^{1+\epsilon}}$.

Key Lemmas

Lemma

Let r be an integer, and c_1, c_2 be positive integers and set $P(x) = c_2 x^2 + c_1 x$, then for any $\epsilon > 0$ under the GRH, we have

$$\sum_{\gamma \in \mathcal{F}_{Q,P}} e(r\gamma) \ll (c_1 c_2)^{\epsilon} Q^{1+\epsilon} \sum_{\substack{g \mid c_1}} \frac{1}{g^{1+\epsilon}} \sum_{\substack{q \leq \frac{Q}{g} \\ q \mid r}} \frac{1}{q^{\epsilon}},$$

where $e(x) = \exp(2\pi i x)$.

< 4³ ► <

æ

Key Lemmas

Lemma

Let r be an integer, and c_1, c_2 be positive integers and set $P(x) = c_2 x^2 + c_1 x$, then for any $\epsilon > 0$ under the GRH, we have

$$\sum_{\gamma \in \mathcal{F}_{Q,P}} e(r\gamma) \ll (c_1 c_2)^{\epsilon} Q^{1+\epsilon} \sum_{\substack{g \mid c_1}} \frac{1}{g^{1+\epsilon}} \sum_{\substack{q \leq \frac{Q}{g} \\ q \mid r}} \frac{1}{q^{\epsilon}},$$

where
$$e(x) = \exp(2\pi i x)$$
.

Lemma

Let $q \geq 2, t \in \mathbb{Z}$, then for every $\epsilon > 0$ under the GRH, we have

$$\sum_{\substack{n\leq z\\ \operatorname{cd}(n,q)=1}} \mu(n) e\left(\frac{t\bar{n}_q}{q}\right) \ll z^{\frac{3}{4}+\epsilon}(\tau(q))^2.$$

Bittu Chahal (IIITD)

go

June 21, 2024

13 / 17

Let $\mathbf{c} = (c_1, \cdots, c_n) \in \mathbb{Z}^n$ be a fixed vector and $P(x) = c_n x^n + \cdots + c_1 x$. Define

$$\mathscr{M}_{Q,\mathcal{P}} := \left\{ rac{\mathsf{a}}{\mathsf{p}} : 1 \leq \mathsf{a} \leq \mathsf{p} \leq Q, \; \operatorname{\mathsf{gcd}}(\mathcal{P}(\mathsf{a}),\mathsf{p}) = 1, \mathsf{p} \; \operatorname{\mathsf{is prime}}
ight\}.$$

< 3 > 3

Let $\mathbf{c} = (c_1, \cdots, c_n) \in \mathbb{Z}^n$ be a fixed vector and $P(x) = c_n x^n + \cdots + c_1 x$. Define

$$\mathscr{M}_{\mathcal{Q},\mathcal{P}} := \left\{ rac{\mathsf{a}}{\mathsf{p}} : 1 \leq \mathsf{a} \leq \mathsf{p} \leq \mathcal{Q}, \; \mathsf{gcd}(\mathcal{P}(\mathsf{a}),\mathsf{p}) = 1,\mathsf{p} \; \mathsf{is \; prime}
ight\}.$$

Theorem (.C, Chaubey, 2024)

The limiting pair correlation function of the sequence $(\mathcal{M}_{Q,P})_{Q \in \mathbb{N}}$ exists as $Q \to \infty$ and is Poissonian.

Races for Farey fractions

We define

$$S_P(Q;q,l) := \sum_{\substack{n \leq Q \ n \equiv l \pmod{q}}} \sum_{\substack{a \leq n \ (ext{mod } q) \ ext{gcd}(P(a),n) = 1}} 1.$$

< ∃⇒

Image: A matrix

æ

We define

$$S_P(Q;q,l) := \sum_{\substack{n \leq Q \ n \equiv l \pmod{q}}} \sum_{\substack{a \leq n \ (ext{mod } q) \ ext{gcd}(P(a),n) = 1}} 1.$$

Theorem (.C, Chaubey, 2024)

Let $q \ge 2$ be an integer, assume Haselgrove's condition for the modulus q, let l_1, l_2 be positive integers such that $l_1 \not\equiv l_2 \pmod{q}$ and $(q, l_1 l_2) = 1$, and let $P(x) = c_{\nu} x^{\nu} + \cdots + c_1 x \in \mathbb{Z}[x]$. Then, the set of values of Q for which the difference $S_P(Q; q, l_1) - S_P(Q; q, l_2)$ is strictly positive and the set of values of Q for which the difference $S_P(Q; q, l_1) - S_P(Q; q, l_2)$ is strictly negative are unbounded.

Denote

$$A(Q) = S(Q;q,l_1) - S(Q;q,l_2) \pm cQ^{\frac{1}{2}-\epsilon}$$

Remark

We get a sequence $\{Q_i\}_{i=1}^{\lfloor \log T \rfloor}$ in the interval (1, T] such that $sgnA(Q_i) \neq sgnA(Q_{i+1})$ and $|A(Q_i)| > Q_i^{1/2-\epsilon}$. Hence, A(Q) has at least $\gg \log T$ oscillations of size $Q^{1/2-\epsilon}$, in the interval (1, T].

Thank You!

- ∢ ⊒ →

Image: A matrix and a matrix

æ