

Explicit bounds for ζ and a new zero-free region

Chiara Bellotti

University of New South Wales, Canberra

16th January 2024

Chiara Bellotti

University of New South Wales, Canberra

Table of contents

- Overview of the problem and importance
- Statement of the new result and idea of the proof
- Some consequences

Chiara Bellotti

The Riemann zeta function

The Riemann zeta function is defined as

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

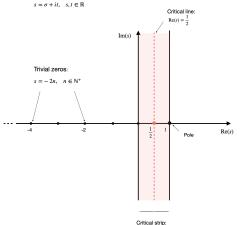
for $\operatorname{Re}(s) > 1$, and its analytic continuation elsewhere.

Chiara Bellotti

University of New South Wales, Canberra

New result

Zeros of the Riemann zeta function



 $\{s \in \mathbb{C} : 0 < \operatorname{Re}(s) < 1\}$

Chiara Bellotti

University of New South Wales, Canberra

Riemann Hypothesis

All the non-trivial zeros of ζ have real part equal to $\frac{1}{2}$.

• Partial verification of RH up to $T = 3 \cdot 10^{12}$ (Platt-Trudgian, 2021)

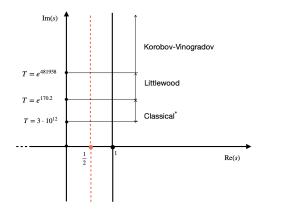
Main approaches to the problem

- Detecting zero-free regions for $\boldsymbol{\zeta}$
- Zero-density estimates

Chiara Bellotti

University of New South Wales, Canberra

Zero-free regions for ζ



Chiara Bellotti

University of New South Wales, Canberra

Zero-free regions for $\boldsymbol{\zeta}$

• Classical zero-free region (Mossinghoff-Trudgian-Yang, 2022)

$$\sigma \geq 1 - \frac{1}{5.558691 \log T}, \qquad T \geq 3$$

• Littlewood zero-free region (Yang, 2023)

$$\sigma \ge 1 - \frac{\log \log T}{21.233 \log T}.$$

• Korobov-Vinogradov zero-free region (B.)

$$\sigma \geq 1 - \frac{1}{53.989 \log^{2/3} T (\log \log T)^{1/3}}$$

Chiara Bellotti

University of New South Wales, Canberra

New result

Consequences

Detecting Korobov-Vinogradov zero-free region

Main tool:

Sharp upper bound for $|\zeta(\sigma+it)|$ when σ sufficiently close to 1

• The proof follows (Ford, 2002)

Chiara Bellotti

University of New South Wales, Canberra

Upper bounds on $\zeta(s)$

Sharpest upper bound when σ is close to 1 (Vinogradov, 1958)

$$|\zeta(\sigma+it)|\ll |t|^{B(1-\sigma)^{3/2}+\epsilon}$$

Explicit version (Richert, 1967)

$$|\zeta(\sigma+it)| \leq A|t|^{B(1-\sigma)^{3/2}}\log^{2/3}|t| \qquad |t|\geq 3, \; rac{1}{2}\leq \sigma\leq 1$$

- Kulas, Cheng (1999)
- *A* = 76.2, *B* = 4.45 Ford (2002)
- *A* = 70.6995, *B* = 4.43795 B.

Chiara Bellotti

University of New South Wales, Canberra

Statement of the new result

Theorem (B.)

The following estimate holds for every $|t| \ge 3$ and $\frac{1}{2} \le \sigma \le 1$:

$$|\zeta(\sigma + it)| \le A|t|^{B(1-\sigma)^{3/2}} \log^{2/3} |t|,$$

with A = 70.6995 and B = 4.43795.

Chiara Bellotti

University of New South Wales, Canberra

Idea of the proof

The proof follows (Ford, 2002)

- Find upper bounds for the Vinogradov Integral
- estimate exponential sums
- Sound $|\zeta(\sigma + it)|$

Chiara Bellotti

First step: the Vinogradov integral

The Vinogradov integral is defined as

$$J_{s,k}(P) = \int_{[0,1]^k} \left| \sum_{1 \le x \le P} e\left(\alpha_1 x + \dots + \alpha_k x^k \right) \right|^{2s} d\alpha$$

where $s, k \in \mathbb{N}$, $\alpha = (\alpha_1, \dots, \alpha_k)$ and $e(z) = e^{2\pi i z}$.

Equivalently, it is the number of solutions of the simultaneous equations

$$\sum_{i=1}^{s} \left(x_{i}^{j} - y_{i}^{j} \right) = 0 \quad (1 \le j \le k); \quad 1 \le x_{i}, y_{i} \le P.$$

Chiara Bellotti

University of New South Wales, Canberra

Bounds for the Vinogradov integral

Non-explicit bounds-Conjecture

$$J_{s,k}(P) \ll_{s,k,\epsilon} \max\{P^{s+\epsilon}, P^{2s-\frac{1}{2}k(k+1)+\epsilon}\}, \qquad s,k \in \mathbb{N}, \ \epsilon > 0$$

• k = 3 (Wooley, 2016), k > 3 (Bourgain, Demeter, Guth, 2016)

Explicit bounds

$$J_{s,k}(P) \leqslant D(s,k)P^{2s-k(k+1)/2+\eta(s,k)}, \qquad \eta(s,k) \ge 0$$

Chiara Bellotti

Bounds for the Vinogradov integral

A further bound for $J_{s,k}(P)$

If $k \ge 129$, there is an integer $s \le \rho k^2$ such that for $P \ge 1$,

$$J_{s,k}(P) \le k^{\theta k^3} P^{2s - \frac{1}{2}k(k+1) + 0.001k^2}$$

where ρ, θ vary for different ranges of k.

- ρ increases in k
- θ decreases in k

Chiara Bellotti

Sketch of the proof

$129 \le k \le 499$	$500 \le k < 90000$	$k \ge 90000$
- Computation	- Tyrina's method	- Preobrazhenskii's argument
- Improved Ford's argument	- Improved Ford's argument	

The new tool is Tyrina's method

	Ford's recursive argument	B.'s recursive argument
Starting point	$\Delta_1 \leq \frac{1}{2}k^2(1-\frac{1}{k})$	$\Delta_{n_0} \leq 0.4k^2, n_0 = \lceil 0.1247k \rceil$

Chiara Bellotti

University of New South Wales, Canberra

Incomplete systems

Given

$$\mathcal{C}(P,R) = \left\{ n \leq P \mid \text{prime factors in } (\sqrt{R},R] \right\},$$

we define

$$J_{s,k,h}(\mathcal{C}(P,R)) = \int_{[0,1]^t} |f(\alpha)|^{2s} dlpha$$

where

$$f(\boldsymbol{\alpha}) = f(\boldsymbol{\alpha}; \boldsymbol{P}, \boldsymbol{R}) = \sum_{\boldsymbol{x} \in \mathcal{C}(\boldsymbol{P}, \boldsymbol{R})} \boldsymbol{e} \left(\alpha_h \boldsymbol{x}^h + \dots + \alpha_k \boldsymbol{x}^k \right), \quad \boldsymbol{\alpha} = (\alpha_h, \dots, \alpha_k).$$

Equivalently, they are the number of solutions of the simultaneous equations $\label{eq:equations}$

$$\sum_{i=1}^{s} \left(x_i^j - y_i^j \right) = 0 \quad (h \leq j \leq k); \quad x_i, y_i \in \mathcal{C}(P, R).$$

Chiara Bellotti

University of New South Wales, Canberra

Second step

Second step: exponential sum estimate

We define

$$S(N,t) := \max_{0 < u \leq 1} \max_{N < R \leq 2N} \left| \sum_{N \leq n \leq R} \frac{1}{(n+u)^{it}} \right|$$

Estimate for S(N, t)

Suppose $N \ge 2$ is a positive integer, $N \le t$ and set $\lambda = \frac{\log t}{\log N}$. Then

$$S(N, t) \leq 8.8 N^{1-1/(132.95\lambda^2)}$$

Chiara Bellotti

University of New South Wales, Canberra

Second step

Sketch of the proof

$1 \le \lambda \le 84$	$84 \le \lambda \le 220$	$\lambda \ge 220$
Ford's computation	Vinogradov's integral and incomplete systems	
	Computational	Optimise Ford's argument

- Critical point: $\lambda = 84$
- Choosing a splitting point for the last two intervals strictly greater than 220 would have negligible influence

Chiara Bellotti

University of New South Wales, Canberra

Third step

Third step: Bound $|\zeta(\sigma + it)|$

$\frac{15}{16} \le \sigma \le 1, t \ge 10^{108}$	$\frac{15}{16} \le \sigma \le 1, \ 3 \le t \le 10^{108}$	$\frac{1}{2} \le \sigma \le \frac{15}{16}, t \ge 3$
Apply lemma below with $C = 8.8, D = 132.95$	Ford's argument	

Lemma

Suppose
$$S(N, t) \leq CN^{1-1/(D\lambda^2)}$$
, where $\lambda = \frac{\log t}{\log N}$ and $1 \leq N \leq t$. Then, denoting $B = \frac{2}{9}\sqrt{3D}$, for $\frac{15}{16} \leq \sigma \leq 1$, $t \geq 10^{100}$ and $0 < u \leq 1$, we have

$$|\zeta(s)| \leq \left(\frac{C+1+10^{-80}}{\log^{2/3} t} + 1.569 C D^{1/3}\right) t^{B(1-\sigma)^{3/2}} \log^{2/3} t.$$

Chiara Bellotti

University of New South Wales, Canberra

Some consequences

- Improved Korobov-Vinogradov zero-free region
- Improved asymptotic zero-free region

$$\sigma \geq 1 - \frac{1}{48.0718(\log|t|)^{2/3}(\log\log|t|)^{1/3}}$$

• Improved estimate for the error term in the prime number theorem

$$\pi(x) - \mathsf{li}(x) \ll x \exp\left\{-d(\log x)^{3/5} (\log \log x)^{-1/5}\right\}, \quad d = 0.2125$$

Chiara Bellotti

University of New South Wales, Canberra

New result

Possible improvements

Considering the new exponential sum

$$\tilde{S}(N,t) := \max_{0 < u \leq 1} \max_{N < R \leq mN} \left| \sum_{N \leq n \leq R} \frac{1}{(n+u)^{it}} \right|, \qquad 1 < m \leq 2,$$

would possibly improve A.

• The obstacle is $\lambda \leq$ 84

University of New South Wales, Canberra

Chiara Bellotti

For more details:

• arXiv:2306.10680

Thank you for your attention!

University of New South Wales, Canberra

Chiara Bellotti