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The Riemann zeta function

The Riemann zeta function is defined as

ζ(s) =
∞∑
n=1

1
ns

=
1
1s

+
1
2s

+
1
3s

+ · · ·

for Re(s) > 1, and its analytic continuation elsewhere.
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Zeros of the Riemann zeta function
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Zeros of ζ

Riemann Hypothesis

All the non-trivial zeros of ζ have real part equal to 1
2 .

Partial verification of RH up to T = 3 · 1012 (Platt-Trudgian, 2021)

Main approaches to the problem

Detecting zero-free regions for ζ
Zero-density estimates
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Zero-free regions for ζ
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Zero-free regions for ζ

Classical zero-free region (Mossinghoff-Trudgian-Yang, 2022)

σ ≥ 1 −
1

5.558691 logT
, T ≥ 3

Littlewood zero-free region (Yang, 2023)

σ ≥ 1 −
log logT

21.233 logT
.

Korobov-Vinogradov zero-free region (B.)

σ ≥ 1 −
1

53.989 log2/3 T (log logT )1/3
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Detecting Korobov-Vinogradov zero-free region

Main tool:

Sharp upper bound for |ζ(σ + it)| when σ sufficiently close to 1

The proof follows (Ford, 2002)
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Upper bounds on ζ(s)

Sharpest upper bound when σ is close to 1 (Vinogradov, 1958)

|ζ(σ + it)| ≪ |t|B(1−σ)3/2+ϵ

Explicit version (Richert, 1967)

|ζ(σ + it)| ≤ A|t|B(1−σ)3/2
log2/3 |t| |t| ≥ 3,

1
2
≤ σ ≤ 1

Kulas, Cheng (1999)
A = 76.2, B = 4.45 Ford (2002)
A = 70.6995, B = 4.43795 B.
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Statement of the new result

Theorem (B.)

The following estimate holds for every |t| ≥ 3 and 1
2 ≤ σ ≤ 1:

|ζ(σ + it)| ≤ A|t|B(1−σ)3/2
log2/3 |t|,

with A = 70.6995 and B = 4.43795.
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Idea of the proof

The proof follows (Ford, 2002)

1 Find upper bounds for the Vinogradov Integral
2 Estimate exponential sums
3 Bound |ζ(σ + it)|
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First step

First step: the Vinogradov integral

The Vinogradov integral is defined as

Js,k(P) =

∫
[0,1]k

∣∣∣∣∣∣
∑

1≤x≤P

e
(
α1x + · · ·+ αkx

k
)∣∣∣∣∣∣

2s

dα

where s, k ∈ N, α = (α1, . . . , αk) and e(z) = e2πiz .

Equivalently, it is the number of solutions of the simultaneous
equations

s∑
i=1

(
x ji − y ji

)
= 0 (1 ≤ j ≤ k); 1 ≤ xi , yi ≤ P.
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First step

Bounds for the Vinogradov integral

Non-explicit bounds-Conjecture

Js,k(P) ≪s,k,ϵ max{Ps+ϵ,P2s− 1
2 k(k+1)+ϵ}, s, k ∈ N, ϵ > 0

k = 3 (Wooley, 2016), k > 3 (Bourgain, Demeter, Guth, 2016)

Explicit bounds

Js,k(P) ⩽ D(s, k)P2s−k(k+1)/2+η(s,k), η(s, k) ⩾ 0

η(k, s) ≈ 3
8k

2e1/2−2s/k2
and D(s, k) = O(kk3

) Ford (2002)
Improved for k ≥ 16000 by Preobrazhenskii (2011)

η(k, s) ≈ 8
25k

2e0.6494−2s/k2
and D(s, k) = O(kk3

) B.
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First step

Bounds for the Vinogradov integral

A further bound for Js,k(P)

If k ≥ 129, there is an integer s ≤ ρk2 such that for P ≥ 1,

Js,k(P) ≤ kθk
3
P2s− 1

2k(k+1)+0.001k2
,

where ρ, θ vary for different ranges of k .

ρ increases in k

θ decreases in k
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First step

Sketch of the proof

The new tool is Tyrina’s method
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First step

Incomplete systems
Given

C(P,R) =
{
n ≤ P | prime factors in (

√
R,R]

}
,

we define
Js,k,h(C(P,R)) =

∫
[0,1]t

|f (α)|2sdα

where

f (α) = f (α;P,R) =
∑

x∈C(P,R)

e
(
αhx

h + · · ·+ αkx
k
)
, α = (αh, · · · , αk) .

Equivalently, they are the number of solutions of the simultaneous
equations

s∑
i=1

(
x j
i − y j

i

)
= 0 (h ≤ j ≤ k); xi , yi ∈ C(P,R).
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Second step

Second step: exponential sum estimate

We define

S(N, t) := max
0<u≤1

max
N<R≤2N

∣∣∣∣∣∣
∑

N≤n≤R

1
(n + u)it

∣∣∣∣∣∣
Estimate for S(N, t)

Suppose N ≥ 2 is a positive integer, N ≤ t and set λ = log t
logN . Then

S(N, t) ≤ 8.8N1−1/(132.95λ2).
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Second step

Sketch of the proof

Critical point: λ = 84
Choosing a splitting point for the last two intervals strictly
greater than 220 would have negligible influence
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Third step

Third step: Bound |ζ(σ + it)|

Lemma

Suppose S(N, t) ≤ CN1−1/(Dλ2), where λ = log t
log N

and 1 ≤ N ≤ t. Then,
denoting B = 2

9

√
3D, for 15

16 ≤ σ ≤ 1, t ≥ 10100 and 0 < u ≤ 1, we have

|ζ(s)| ≤
(
C + 1 + 10−80

log2/3 t
+ 1.569CD1/3

)
tB(1−σ)3/2

log2/3 t.
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Some consequences

Improved Korobov-Vinogradov zero-free region
Improved asymptotic zero-free region

σ ≥ 1 − 1
48.0718(log |t|)2/3(log log |t|)1/3

Improved estimate for the error term in the prime number
theorem

π(x)− li(x) ≪ x exp
{
−d(log x)3/5(log log x)−1/5

}
, d = 0.2125
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Possible improvements

Considering the new exponential sum

S̃(N, t) := max
0<u≤1

max
N<R≤mN

∣∣∣∣∣∣
∑

N≤n≤R

1
(n + u)it

∣∣∣∣∣∣ , 1 < m ≤ 2,

would possibly improve A.

The obstacle is λ ≤ 84
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For more details:
arXiv:2306.10680

Thank you for your attention!
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