Unconditional comparative prime number theory over function fields

Alexandre Bailleul

ENS Paris-Saclay

June 21, 2024

With L. Devin, D. Keliher, W. Li

Comparative Prime Number Theory Symposium, Vancouver, BC

Chebyshev's bias

- Chebyshev, 1853: Claims that we should have $\pi(x ; 4,3)>\pi(x ; 4,1)$ for large x.

Chebyshev's bias

- Chebyshev, 1853: Claims that we should have $\pi(x ; 4,3)>\pi(x ; 4,1)$ for large x.
- Phragmén, 1891:

$$
\sum_{\substack{p^{k} \leq x \\ p^{k} \equiv 1 \bmod 4}} \frac{1}{k p^{k}}-\sum_{\substack{p^{k} \leq x \\ p^{k} \equiv 3 \bmod 4}} \frac{1}{k p^{k}}+\log 2
$$

changes sign infinitely many times.

Chebyshev's bias

- Chebyshev, 1853: Claims that we should have $\pi(x ; 4,3)>\pi(x ; 4,1)$ for large x.
- Phragmén, 1891:

$$
\sum_{\substack{p^{k} \leq x \\ p^{k} \equiv 1 \bmod 4}} \frac{1}{k p^{k}}-\sum_{\substack{p^{k} \leq x \\ p^{k} \equiv 3 \bmod 4}} \frac{1}{k p^{k}}+\log 2
$$

changes sign infinitely many times.

- Littlewood, 1914:

$$
\pi(x ; 4,3)-\pi(x ; 4,1)=\Omega_{ \pm}\left(x^{1 / 2} \frac{\log \log \log x}{\log x}\right)
$$

Chebyshev's bias

Let

$$
\mathcal{P}_{4 ; 3,1}:=\{x \geq 2 \mid \pi(x ; 4,3)>\pi(x ; 4,1)\} .
$$

Chebyshev's bias

Let

$$
\mathcal{P}_{4 ; 3,1}:=\{x \geq 2 \mid \pi(x ; 4,3)>\pi(x ; 4,1)\} .
$$

We expect $\mathcal{P}_{4 ; 3,1}$ to be "large" in some sense.

Chebyshev's bias

Let

$$
\mathcal{P}_{4 ; 3,1}:=\{x \geq 2 \mid \pi(x ; 4,3)>\pi(x ; 4,1)\} .
$$

We expect $\mathcal{P}_{4 ; 3,1}$ to be "large" in some sense.

- Conjecture (Knapowski-Turán, 1962):

$$
d\left(\mathcal{P}_{4 ; 3,1}\right):=\lim _{X \rightarrow+\infty} \frac{\left|\mathcal{P}_{4 ; 3,1} \cap[2, X]\right|}{X}=1 .
$$

Chebyshev's bias

Let

$$
\mathcal{P}_{4 ; 3,1}:=\{x \geq 2 \mid \pi(x ; 4,3)>\pi(x ; 4,1)\} .
$$

We expect $\mathcal{P}_{4 ; 3,1}$ to be "large" in some sense.

- Conjecture (Knapowski-Turán, 1962):

$$
d\left(\mathcal{P}_{4 ; 3,1}\right):=\lim _{X \rightarrow+\infty} \frac{\left|\mathcal{P}_{4 ; 3,1} \cap[2, X]\right|}{X}=1 .
$$

- Kaczorowski, 1995 : If $L\left(s, \chi_{4}\right)$ satisfies GRH (Generalized Riemann Hypothesis), then

$$
\underline{d}\left(\mathcal{P}_{4 ; 3,1}\right)<0,9594595 \ldots
$$

and

$$
\bar{d}\left(\mathcal{P}_{4 ; 3,1}\right)>0,999989360 \ldots
$$

Chebyshev's bias
Let

$$
\mathcal{P}_{4 ; 3,1}:=\{x \geq 2 \mid \pi(x ; 4,3)>\pi(x ; 4,1)\} .
$$

We expect $\mathcal{P}_{4 ; 3,1}$ to be "large" in some sense.

- Conjecture (Knapowski-Turán, 1962):

$$
d\left(\mathcal{P}_{4 ; 3,1}\right):=\lim _{X \rightarrow+\infty} \frac{\left|\mathcal{P}_{4 ; 3,1} \cap[2, X]\right|}{X}=1 .
$$

- Kaczorowski, 1995 : If $L\left(s, \chi_{4}\right)$ satisfies GRH (Generalized Riemann Hypothesis), then

$$
\underline{d}\left(\mathcal{P}_{4 ; 3,1}\right)<0,9594595 \ldots
$$

and

$$
\bar{d}\left(\mathcal{P}_{4 ; 3,1}\right)>0,999989360 \ldots
$$

In particular, $d\left(\mathcal{P}_{4 ; 3,1}\right)$ does not exist!

Chebyshev's bias
Let

$$
\mathcal{P}_{4 ; 3,1}:=\{x \geq 2 \mid \pi(x ; 4,3)>\pi(x ; 4,1)\} .
$$

We expect $\mathcal{P}_{4 ; 3,1}$ to be "large" in some sense.

- Conjecture (Knapowski-Turán, 1962):

$$
d\left(\mathcal{P}_{4 ; 3,1}\right):=\lim _{X \rightarrow+\infty} \frac{\left|\mathcal{P}_{4 ; 3,1} \cap[2, X]\right|}{X}=1 .
$$

- Kaczorowski, 1995 : If $L\left(s, \chi_{4}\right)$ satisfies GRH (Generalized Riemann Hypothesis), then

$$
\underline{d}\left(\mathcal{P}_{4 ; 3,1}\right)<0,9594595 \ldots
$$

and

$$
\bar{d}\left(\mathcal{P}_{4 ; 3,1}\right)>0,999989360 \ldots
$$

In particular, $d\left(\mathcal{P}_{4 ; 3,1}\right)$ does not exist!

- Rubinstein-Sarnak, 1994 : If $L\left(s, \chi_{4}\right)$ satisfies GRH and LI (Linear Independence),

$$
\delta\left(\mathcal{P}_{4 ; 3,1}\right):=\lim _{X \rightarrow+\infty} \frac{1}{\log X} \int_{2}^{X} \mathbf{1}_{\mathcal{P}_{4 ; 3,1}}(t) \frac{\mathrm{d} t}{t}
$$

exists and $\delta\left(\mathcal{P}_{4 ; 3,1}\right) \approx 0,9959 \ldots$

Rubinstein and Sarnak's results

If the Dirichlet characters modulo q statisfy GRH and LI then:

- If $a \equiv \square \bmod q$ and $b \equiv \square \bmod q$, or if $a \equiv \boxtimes \bmod q$ et $b \equiv \boxtimes \bmod q$ then $\delta\left(\mathcal{P}_{q ; a, b}\right)=\frac{1}{2}$.

Rubinstein and Sarnak's results

If the Dirichlet characters modulo q statisfy GRH and LI then:

- If $a \equiv \square \bmod q$ and $b \equiv \square \bmod q$, or if $a \equiv \boxtimes \bmod q$ et $b \equiv \boxtimes \bmod q$ then $\delta\left(\mathcal{P}_{q ; a, b}\right)=\frac{1}{2}$.
- If $a \equiv \boxtimes \bmod q$ and $b \equiv \square \bmod q$ then $\frac{1}{2}<\delta\left(\mathcal{P}_{q ; a, b}\right)<1$.

Rubinstein and Sarnak's results

If the Dirichlet characters modulo q statisfy GRH and LI then:

- If $a \equiv \square \bmod q$ and $b \equiv \square \bmod q$, or if $a \equiv \boxtimes \bmod q$ et $b \equiv \boxtimes \bmod q$ then $\delta\left(\mathcal{P}_{q ; a, b}\right)=\frac{1}{2}$.
- If $a \equiv \boxtimes \bmod q$ and $b \equiv \square \bmod q$ then $\frac{1}{2}<\delta\left(\mathcal{P}_{q ; a, b}\right)<1$.
- If q is of the form p^{α} or $2 p^{\alpha}$, then $\frac{1}{2}<\delta\left(\mathcal{P}_{q ; N R, R}\right)<1$, where

$$
\begin{gathered}
\mathcal{P}_{q ; N R, R}:=\{x \geq 2 \mid \pi(x ; q, N R)>\pi(x ; q, R)\}, \\
\pi(x ; q, R)=\#\{p \leq x \mid p \equiv \square \bmod q\}
\end{gathered}
$$

and

$$
\pi(x ; q, N R)=\#\{p \leq x \mid p \equiv \boxtimes \bmod q\}
$$

The LI hypothesis

Explicit formula:

$$
\begin{aligned}
\frac{\pi\left(e^{x} ; q, a\right)-\pi\left(e^{x} ; q, b\right)}{e^{x / 2} / x}= & \# \sqrt{\{b\}}-\# \sqrt{\{a\}} \\
& +\sum_{\chi \in X_{q}} \frac{\chi^{2}(b)-\chi(a)}{\sum_{\gamma_{\chi}} \frac{e^{i \gamma_{\chi} x}}{\frac{1}{2}+i \gamma_{\chi}}+O\left(\frac{1}{x}\right)}
\end{aligned}
$$

The LI hypothesis

Explicit formula:

$$
\begin{aligned}
\frac{\pi\left(e^{x} ; q, a\right)-\pi\left(e^{x} ; q, b\right)}{e^{x / 2} / x}= & \# \sqrt{\{b\}}-\# \sqrt{\{a\}} \\
& +\sum_{\chi \in X_{q}} \frac{\chi(b)-\chi(a)}{\sum_{\gamma_{\chi}} \frac{e^{i \gamma_{\chi} x}}{\frac{1}{2}+i \gamma_{\chi}}+O\left(\frac{1}{x}\right)} .
\end{aligned}
$$

Conjecture (LI).

The (multi)set $\bigcup_{\chi \in X_{q}}\left\{\gamma \geq 0 \left\lvert\, L\left(\frac{1}{2}+i \gamma, \chi\right)=0\right.\right\}$ is linearly independent over

The LI hypothesis

Explicit formula:

$$
\begin{aligned}
\frac{\pi\left(e^{x} ; q, a\right)-\pi\left(e^{x} ; q, b\right)}{e^{x / 2} / x}= & \# \sqrt{\{b\}}-\# \sqrt{\{a\}} \\
& +\sum_{\chi \in X_{q}} \frac{\chi(b)-\chi(a)}{\sum_{\gamma_{\chi}} \frac{e^{i \gamma_{\chi} x}}{\frac{1}{2}+i \gamma_{\chi}}+O\left(\frac{1}{x}\right)}
\end{aligned}
$$

Conjecture (LI).

The (multi)set $\bigcup_{\chi \in X_{q}}\left\{\gamma \geq 0 \left\lvert\, L\left(\frac{1}{2}+i \gamma, \chi\right)=0\right.\right\}$ is linearly independent over

The Kronecker-Weyl equidistribution theorem tells us that $e^{i \gamma_{j} x}$ behave like independent uniform random variables on the circle.

Generalizations

There have been many generalizations:

- Fiorilli (2014) showed that the quantity $\delta(q ; N R, R)$ takes dense values in $[1 / 2,1]$.

Generalizations

There have been many generalizations:

- Fiorilli (2014) showed that the quantity $\delta(q ; N R, R)$ takes dense values in $[1 / 2,1]$.
- Lamzouri studied what happens when the number of contestants varies.

Generalizations

There have been many generalizations:

- Fiorilli (2014) showed that the quantity $\delta(q ; N R, R)$ takes dense values in $[1 / 2,1]$.
- Lamzouri studied what happens when the number of contestants varies.
- Many quantities relevant to prime number theory have also been considered (point-counting over elliptic curves (Fiorilli), Mertens theorems (Lamzouri), weighted Möbius sums (Akbary-Ng-Shahabi), "Fouvry's bias" (Devin), etc.)

Generalizations

There have been many generalizations:

- Fiorilli (2014) showed that the quantity $\delta(q ; N R, R)$ takes dense values in $[1 / 2,1]$.
- Lamzouri studied what happens when the number of contestants varies.
- Many quantities relevant to prime number theory have also been considered (point-counting over elliptic curves (Fiorilli), Mertens theorems (Lamzouri), weighted Möbius sums (Akbary-Ng-Shahabi), "Fouvry's bias" (Devin), etc.)
- $\mathbf{N g}$ (2000) generalized Rubinstein and Sarnak's method to study "Chebotarev races" in number fields.

Generalizations

There have been many generalizations:

- Fiorilli (2014) showed that the quantity $\delta(q ; N R, R)$ takes dense values in $[1 / 2,1]$.
- Lamzouri studied what happens when the number of contestants varies.
- Many quantities relevant to prime number theory have also been considered (point-counting over elliptic curves (Fiorilli), Mertens theorems (Lamzouri), weighted Möbius sums (Akbary-Ng-Shahabi), "Fouvry's bias" (Devin), etc.)
- $\mathbf{N g}$ (2000) generalized Rubinstein and Sarnak's method to study "Chebotarev races" in number fields.
- Weakening of GRH or LI (works of Martin-Ng, Devin, B.).

Generalizations

There have been many generalizations:

- Fiorilli (2014) showed that the quantity $\delta(q ; N R, R)$ takes dense values in $[1 / 2,1]$.
- Lamzouri studied what happens when the number of contestants varies.
- Many quantities relevant to prime number theory have also been considered (point-counting over elliptic curves (Fiorilli), Mertens theorems (Lamzouri), weighted Möbius sums (Akbary-Ng-Shahabi), "Fouvry's bias" (Devin), etc.)
- $\mathbf{N g}$ (2000) generalized Rubinstein and Sarnak's method to study "Chebotarev races" in number fields.
- Weakening of GRH or LI (works of Martin-Ng, Devin, B.).
- Cha (and later Cha-Im) adapted the Rubinstein-Sarnak framework to function fields.

The canonical table

The canonical table

Usual arithmetic	Arithmetic over finite fields
\mathbb{Z}	$\mathbb{F}_{q}[T]$
(Positive) Primes	(Monic) Irreducible polynomials

The canonical table

Usual arithmetic	Arithmetic over finite fields
\mathbb{Z}	$\mathbb{F}_{q}[T]$
(Positive) Primes	(Monic) Irreducible polynomials
$n \leq x$	$\|P\|=q^{\operatorname{deg} P}=\# \mathbb{F}_{q}[T] /(P) \leq X$

The canonical table

Usual arithmetic	Arithmetic over finite fields
\mathbb{Z}	$\mathbb{F}_{q}[T]$
(Positive) Primes	$($ Monic $)$ Irreducible polynomials
$n \leq x$	$\|P\|=q^{\operatorname{deg} P}=\# \mathbb{F}_{q}[T] /(P) \leq X$
$\varphi(n)$	$\varphi(M)=\#\left(\mathbb{F}_{q}[T] /(P)\right)^{\times}$

The canonical table

Usual arithmetic	Arithmetic over finite fields
\mathbb{Z}	$\mathbb{F}_{q}[T]$
(Positive) Primes	$($ Monic $)$ Irreducible polynomials
$n \leq x$	$\|P\|=q^{\text {deg } P}=\# \mathbb{F}_{q}[T] /(P) \leq X$
$\varphi(n)$	$\varphi(M)=\#\left(\mathbb{F}_{q}[T] /(P)\right)^{\times}$
Dirichlet characters mod q	Characters of $\left(\mathbb{F}_{q}[T] /(P)\right)^{\times}$

The canonical table

Usual arithmetic	Arithmetic over finite fields
\mathbb{Z}	$\mathbb{F}_{q}[T]$
$($ Positive) Primes	$($ Monic $)$ Irreducible polynomials
$n \leq x$	$\|P\|=q^{\operatorname{deg} P}=\# \mathbb{F}_{q}[T] /(P) \leq X$
$\varphi(n)$	$\left.\varphi(M)=\#\left(\mathbb{F}_{q} T\right] /(P)\right)^{\times}$
Dirichlet characters mod q	Characters of $\left(\mathbb{F}_{q}[T] /(P)\right)^{\times}$
\ldots	\ldots

Irreducible polynomial races

- Let $M \in \mathbb{F}_{q}[T]$ be non-constant and $A \in \mathbb{F}_{q}[T]$ coprime with M. Then

$$
\begin{aligned}
\pi(n ; M, A) & : \\
& =\#\left\{P \in \mathbb{F}_{q}[T] \text { irreducible } \mid \operatorname{deg} P \leq n, P \equiv A \bmod M\right\} \\
& \frac{q^{n}}{\varphi(M) n}
\end{aligned}
$$

Irreducible polynomial races

- Let $M \in \mathbb{F}_{q}[T]$ be non-constant and $A \in \mathbb{F}_{q}[T]$ coprime with M. Then

$$
\begin{aligned}
\Pi(X ; M, A) & :=\#\left\{P \in \mathbb{F}_{q}[T] \text { irreducible }| | P \mid=q^{\operatorname{deg} P} \leq X=q^{n}, P \equiv A \bmod M\right\} \\
& \underset{X \rightarrow+\infty}{\sim} \frac{1}{\varphi(M)} \frac{X}{\log _{q} X} .
\end{aligned}
$$

Irreducible polynomial races

- Let $M \in \mathbb{F}_{q}[T]$ be non-constant and $A \in \mathbb{F}_{q}[T]$ coprime with M. Then

$$
\begin{aligned}
& \pi(n ; M, A):= \\
& \#\left\{P \in \mathbb{F}_{q}[T] \text { irreducible } \mid \operatorname{deg} P \leq n, P \equiv A \bmod M\right\} \\
& \sim+\infty \\
& \varphi(M) n
\end{aligned}
$$

- Define

$$
\pi(n ; M, \square):=\#\left\{P \in \mathbb{F}_{q}[T] \text { irreducible } \mid \operatorname{deg} P=n, P \equiv \square \bmod M\right\},
$$

Irreducible polynomial races

- Let $M \in \mathbb{F}_{q}[T]$ be non-constant and $A \in \mathbb{F}_{q}[T]$ coprime with M. Then

$$
\begin{aligned}
\pi(n ; M, A) & := \\
& \#\left\{P \in \mathbb{F}_{q}[T] \text { irreducible } \mid \operatorname{deg} P \leq n, P \equiv A \bmod M\right\} \\
& \frac{q^{n}}{\varphi(M) n}
\end{aligned}
$$

- Define

$$
\begin{gathered}
\pi(n ; M, \square):=\#\left\{P \in \mathbb{F}_{q}[T] \text { irreducible } \mid \operatorname{deg} P=n, P \equiv \square \bmod M\right\}, \\
\mathcal{P}_{M ; \boxtimes, \square}=\{X \geq 1 \mid \pi(X ; M, \boxtimes)>\pi(X ; M, \square)\}
\end{gathered}
$$

Irreducible polynomial races

- Let $M \in \mathbb{F}_{q}[T]$ be non-constant and $A \in \mathbb{F}_{q}[T]$ coprime with M. Then

$$
\begin{aligned}
\pi(n ; M, A) & := \\
& \#\left\{P \in \mathbb{F}_{q}[T] \text { irreducible } \mid \operatorname{deg} P \leq n, P \equiv A \bmod M\right\} \\
& \frac{q^{n}}{\varphi(M) n}
\end{aligned}
$$

- Define

$$
\begin{gathered}
\pi(n ; M, \square):=\#\left\{P \in \mathbb{F}_{q}[T] \text { irreducible } \mid \operatorname{deg} P=n, P \equiv \square \bmod M\right\} \\
\mathcal{P}_{M ; \boxtimes, \square}=\{X \geq 1 \mid \pi(X ; M, \boxtimes)>\pi(X ; M, \square)\}
\end{gathered}
$$

and, if it exists, $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right):=\lim _{X \rightarrow+\infty} \frac{1}{X} \#\left(\mathcal{P}_{M ; \boxtimes, \square} \cap \llbracket 1, X \rrbracket\right)$ its natural density.

Irreducible polynomial races

- Let $M \in \mathbb{F}_{q}[T]$ be non-constant and $A \in \mathbb{F}_{q}[T]$ coprime with M. Then

$$
\begin{aligned}
& \pi(n ; M, A): \\
&=\#\left\{P \in \mathbb{F}_{q}[T] \text { irreducible } \mid \operatorname{deg} P \leq n, P \equiv A \bmod M\right\} \\
& \sim q^{n} \\
& \varphi(M) n
\end{aligned}
$$

- Define

$$
\begin{gathered}
\pi(n ; M, \square):=\#\left\{P \in \mathbb{F}_{q}[T] \text { irreducible } \mid \operatorname{deg} P=n, P \equiv \square \bmod M\right\}, \\
\mathcal{P}_{M ; \boxtimes, \square}=\{X \geq 1 \mid \pi(X ; M, \boxtimes)>\pi(X ; M, \square)\}
\end{gathered}
$$

and, if it exists, $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right):=\lim _{X \rightarrow+\infty} \frac{1}{X} \#\left(\mathcal{P}_{M ; \boxtimes, \square} \cap \llbracket 1, X \rrbracket\right)$ its natural density.

Theorem (Cha, 2008).

Let $M \in \mathbb{F}_{q}[T]$ be irreducible. Assume LI_{π} for the zeroes of the Dirichlet L functions modulo M. Then $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right)$ exists and one has

$$
1 / 2<d\left(\mathcal{P}_{M ; \boxtimes, \square}\right)<1
$$

The hypothesis LI_{π}

Theorem (Weil, 1940).

For each primitive Dirichlet character χ modulo $M \in \mathbb{F}_{q}[T]$, the function

$$
L(s, \chi)=\sum_{A \in \mathbb{F}_{q}[T]} \frac{\chi(A)}{|A|^{s}}=\sum_{A \in \mathbb{F}_{q}[T]} \frac{\chi(A)}{q^{s \operatorname{deg} A}}
$$

is a polynomial in $u:=q^{-s}$ with integer coefficients:
$\mathcal{L}(u, \chi):=L(s, \chi)=\prod_{j=1}^{M(\chi)}\left(1-\alpha_{j}(\chi) u\right) \quad$ with $\alpha_{j}(\chi)=\sqrt{q} e^{i \theta_{j}(\chi)}, \theta_{j}(\chi) \in(-\pi, \pi]$.

The hypothesis LI_{π}

Theorem (Weil, 1940).

For each primitive Dirichlet character χ modulo $M \in \mathbb{F}_{q}[T]$, the function

$$
L(s, \chi)=\sum_{A \in \mathbb{F}_{q}[T]} \frac{\chi(A)}{|A|^{s}}=\sum_{A \in \mathbb{F}_{q}[T]} \frac{\chi(A)}{q^{s \operatorname{deg} A}}
$$

is a polynomial in $u:=q^{-s}$ with integer coefficients:
$\mathcal{L}(u, \chi):=L(s, \chi)=\prod_{j=1}^{M(\chi)}\left(1-\alpha_{j}(\chi) u\right) \quad$ with $\alpha_{j}(\chi)=\sqrt{q} e^{i \theta_{j}(\chi)}, \theta_{j}(\chi) \in(-\pi, \pi]$.

Conjecture (LI_{π}).

The (multi)set $\left(\left\{\theta_{j}(\chi) \mid \chi \in X_{M}^{*}, 1 \leq j \leq M(\chi)\right\} \cap(0, \pi)\right) \cup\{\pi\}$ is linearly independent over \mathbb{Q}.

About LI_{π}

- When $M \in \mathbb{F}_{q}[T]$ is squarefree, there exists a unique primitive quadratic character χ_{M} modulo M (Legendre symbol when M is irreducible).
- LI_{π} is not always true for $\mathcal{L}\left(u, \chi_{M}\right)$!

About LI_{π}

- When $M \in \mathbb{F}_{q}[T]$ is squarefree, there exists a unique primitive quadratic character χ_{M} modulo M (Legendre symbol when M is irreducible).
- LI_{π} is not always true for $\mathcal{L}\left(u, \chi_{M}\right)$!
- Example (Cha): $p=5, M=T^{5}+3 T^{4}+4 T^{3}+2 T+2$ irreducible. Then $\mathcal{L}\left(u, \chi_{M}\right)=25 u^{4}-25 u^{3}+15 u^{2}-5 u+1$ with $\alpha_{1}=\sqrt{5} e^{\frac{2 i \pi}{5}}, \alpha_{2}=\sqrt{5} e^{\frac{4 i \pi}{5}}$ and we have $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right) \approx 40 \%<\frac{1}{2}$.

About LI_{π}

- When $M \in \mathbb{F}_{q}[T]$ is squarefree, there exists a unique primitive quadratic character χ_{M} modulo M (Legendre symbol when M is irreducible).
- LI_{π} is not always true for $\mathcal{L}\left(u, \chi_{M}\right)$!
- Example (Cha): $p=5, M=T^{5}+3 T^{4}+4 T^{3}+2 T+2$ irreducible. Then $\mathcal{L}\left(u, \chi_{M}\right)=25 u^{4}-25 u^{3}+15 u^{2}-5 u+1$ with $\alpha_{1}=\sqrt{5} e^{\frac{2 i \pi}{5}}, \alpha_{2}=\sqrt{5} e^{\frac{4 i \pi}{5}}$ and we have $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right) \approx 40 \%<\frac{1}{2}$.
- Example (Devin-Meng): $q=9, M=T^{4}+2 T^{3}+2 T+a^{7}$ where $\mathbb{F}_{9}=\mathbb{F}_{3}(a)$. Then $\mathcal{L}\left(u, \chi_{M}\right)=(1-3 u)^{2}$ and we have $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right)=1$.

About LI_{π}

- When $M \in \mathbb{F}_{q}[T]$ is squarefree, there exists a unique primitive quadratic character χ_{M} modulo M (Legendre symbol when M is irreducible).
- LI_{π} is not always true for $\mathcal{L}\left(u, \chi_{M}\right)$!
- Example (Cha): $p=5, M=T^{5}+3 T^{4}+4 T^{3}+2 T+2$ irreducible. Then $\mathcal{L}\left(u, \chi_{M}\right)=25 u^{4}-25 u^{3}+15 u^{2}-5 u+1$ with $\alpha_{1}=\sqrt{5} e^{\frac{2 i \pi}{5}}, \alpha_{2}=\sqrt{5} e^{\frac{4 i \pi}{5}}$ and we have $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right) \approx 40 \%<\frac{1}{2}$.
- Example (Devin-Meng): $q=9, M=T^{4}+2 T^{3}+2 T+a^{7}$ where $\mathbb{F}_{9}=\mathbb{F}_{3}(a)$. Then $\mathcal{L}\left(u, \chi_{M}\right)=(1-3 u)^{2}$ and we have $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right)=1$.
- We would like to show that LI_{π} still holds for "most" L-functions $L\left(s, \chi_{M}\right)$.

About LI_{π}

- When $M \in \mathbb{F}_{q}[T]$ is squarefree, there exists a unique primitive quadratic character χ_{M} modulo M (Legendre symbol when M is irreducible).
- LI_{π} is not always true for $\mathcal{L}\left(u, \chi_{M}\right)$!
- Example (Cha): $p=5, M=T^{5}+3 T^{4}+4 T^{3}+2 T+2$ irreducible. Then $\mathcal{L}\left(u, \chi_{M}\right)=25 u^{4}-25 u^{3}+15 u^{2}-5 u+1$ with $\alpha_{1}=\sqrt{5} e^{\frac{2 i \pi}{5}}, \alpha_{2}=\sqrt{5} e^{\frac{4 i \pi}{5}}$ and we have $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right) \approx 40 \%<\frac{1}{2}$.
- Example (Devin-Meng): $q=9, M=T^{4}+2 T^{3}+2 T+a^{7}$ where $\mathbb{F}_{9}=\mathbb{F}_{3}(a)$. Then $\mathcal{L}\left(u, \chi_{M}\right)=(1-3 u)^{2}$ and we have $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right)=1$.
- We would like to show that LI_{π} still holds for "most" L-functions $L\left(s, \chi_{M}\right)$. There are partial results of Kowalski (2008) in certain one-parameter families of polynomials M which are not irreducible.

Some notations

- From now on, $\mathcal{H}_{n}\left(\mathbb{F}_{q}\right):=\left\{f \in \mathbb{F}_{q}[T] \mid f\right.$ monic square-free of degree $\left.n\right\}$ and for $f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right), \chi_{f}$ is the unique primitive quadratic character modulo f.

Some notations

- From now on, $\mathcal{H}_{n}\left(\mathbb{F}_{q}\right):=\left\{f \in \mathbb{F}_{q}[T] \mid f\right.$ monic square-free of degree $\left.n\right\}$ and for $f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right), \chi_{f}$ is the unique primitive quadratic character modulo f.
- We note $g=\left\lfloor\frac{n-1}{2}\right\rfloor$ the genus of the curve C_{f} with affine equation $y^{2}=f(x)$. The numerator of the zeta function of C_{f} is then $L\left(s, \chi_{f}\right)$.

Some notations

- From now on, $\mathcal{H}_{n}\left(\mathbb{F}_{q}\right):=\left\{f \in \mathbb{F}_{q}[T] \mid f\right.$ monic square-free of degree $\left.n\right\}$ and for $f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right), \chi_{f}$ is the unique primitive quadratic character modulo f.
- We note $g=\left\lfloor\frac{n-1}{2}\right\rfloor$ the genus of the curve C_{f} with affine equation $y^{2}=f(x)$. The numerator of the zeta function of C_{f} is then $L\left(s, \chi_{f}\right)$.
- We are interested in the sign of

$$
\begin{aligned}
\Pi\left(n ; \chi_{f}\right):= & \frac{n}{q^{n / 2}}\left(\#\left\{h \in \mathbb{F}_{q}[t] \mid \chi_{f}(h)=1, h \text { irreducible and } \operatorname{deg} h=n\right\}\right. \\
& \left.-\#\left\{h \in \mathbb{F}_{q}[t] \mid \chi_{f}(h)=-1, h \text { irreducible and } \operatorname{deg} h=n\right\}\right) \\
= & \frac{n}{q^{n / 2}} \sum_{\substack{\operatorname{deg} h=n \\
h \text { irreducible }}} \chi_{f}(h) .
\end{aligned}
$$

Some notations

- From now on, $\mathcal{H}_{n}\left(\mathbb{F}_{q}\right):=\left\{f \in \mathbb{F}_{q}[T] \mid f\right.$ monic square-free of degree $\left.n\right\}$ and for $f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right), \chi_{f}$ is the unique primitive quadratic character modulo f.
- We note $g=\left\lfloor\frac{n-1}{2}\right\rfloor$ the genus of the curve C_{f} with affine equation $y^{2}=f(x)$. The numerator of the zeta function of C_{f} is then $L\left(s, \chi_{f}\right)$.
- We are interested in the sign of

$$
\begin{aligned}
\Pi\left(n ; \chi_{f}\right):= & \frac{n}{q^{n / 2}}\left(\#\left\{h \in \mathbb{F}_{q}[t] \mid \chi_{f}(h)=1, h \text { irreducible and } \operatorname{deg} h=n\right\}\right. \\
& \left.-\#\left\{h \in \mathbb{F}_{q}[t] \mid \chi_{f}(h)=-1, h \text { irreducible and } \operatorname{deg} h=n\right\}\right) \\
= & \frac{n}{q^{n / 2}} \sum_{\substack{\operatorname{deg} h=n \\
h \text { irreducible }}} \chi_{f}(h) .
\end{aligned}
$$

- When f is irreducible, it is exactly the sign of $\pi(n ; f, \square)-\pi(n ; f, \boxtimes)$!

First results

Theorem (B.-Devin-Keliher-Li, 2024).

Let q be a power of p an odd prime and $n \geq 3$. Then
$\frac{1}{\# \mathcal{H}_{n}\left(\mathbb{F}_{q}\right)} \#\left\{f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right) \mid L\left(s, \chi_{f}\right)\right.$ doesn't satisfy $\left.\mathrm{LI}_{\pi}\right\}\left\{\begin{array}{c}\ll \frac{p}{q} \text { if } g=1 \\ \ll p \frac{\log q}{q^{1 / 12}} \text { if } g=2 \\ <_{p, g} \frac{(\log q)^{1-\delta_{g}}}{q^{\varepsilon g}} \text { if } g \geq \$,\end{array}\right.$
where $\delta_{g} \underset{g \rightarrow+\infty}{\sim} \frac{1}{8 g}$ and $\varepsilon_{g}=\frac{1}{4 g^{2}+2 g+4}$.

Sketch of proof when $g=1$

- When $g=1, \mathcal{L}\left(u, \chi_{f}\right)$ only has two conjugate roots

Sketch of proof when $g=1$

- When $g=1, \mathcal{L}\left(u, \chi_{f}\right)$ only has two conjugate roots so

Geometric condition:

> Failure of LI
> \Rightarrow Frobenius eigenvalues are roots of unity $\Rightarrow C_{f}$ is a supersingular elliptic curve.

Sketch of proof when $g=1$

- When $g=1, \mathcal{L}\left(u, \chi_{f}\right)$ only has two conjugate roots so

Geometric condition:

> Failure of LI
> \Rightarrow Frobenius eigenvalues are roots of unity $\Rightarrow C_{f}$ is a supersingular elliptic curve.

- Counting: There are $\ll p$ supersingular elliptic curves over $\overline{\mathbb{F}_{q}}$, and we need to count how many different $f \in \mathcal{H}_{3}\left(\mathbb{F}_{q}\right)$ or $f \in \mathcal{H}_{4}\left(\mathbb{F}_{q}\right)$ give rise to isomorphic elliptic curves over $\overline{\mathbb{F}_{q}}$

Sketch of proof when $g=1$

- When $g=1, \mathcal{L}\left(u, \chi_{f}\right)$ only has two conjugate roots so

Geometric condition:
Failure of LI_{π}
\Rightarrow Frobenius eigenvalues are roots of unity $\Rightarrow C_{f}$ is a supersingular elliptic curve.

- Counting: There are $\ll p$ supersingular elliptic curves over $\overline{\mathbb{F}_{q}}$, and we need to count how many different $f \in \mathcal{H}_{3}\left(\mathbb{F}_{q}\right)$ or $f \in \mathcal{H}_{4}\left(\mathbb{F}_{q}\right)$ give rise to isomorphic elliptic curves over $\overline{\mathbb{F}_{q}}$, i.e. such that C_{f} have a given j-invariant \Rightarrow polynomial condition on the coefficients.

Sketch of proof when $g=1$

- When $g=1, \mathcal{L}\left(u, \chi_{f}\right)$ only has two conjugate roots so

Geometric condition:
Failure of LI_{π}
\Rightarrow Frobenius eigenvalues are roots of unity
$\Rightarrow C_{f}$ is a supersingular elliptic curve.

- Counting: There are $\ll p$ supersingular elliptic curves over $\overline{\mathbb{F}_{q}}$, and we need to count how many different $f \in \mathcal{H}_{3}\left(\mathbb{F}_{q}\right)$ or $f \in \mathcal{H}_{4}\left(\mathbb{F}_{q}\right)$ give rise to isomorphic elliptic curves over $\overline{\mathbb{F}_{q}}$, i.e. such that C_{f} have a given j-invariant \Rightarrow polynomial condition on the coefficients.
- For higher genus, the main steps are the same but are much more complicated.

Sketch of proof when $g \geq 2$

- Step 1 ("Geometric" condition): If $\mathcal{L}\left(u, \chi_{f}\right)$ doesn't satisfy LI_{π}, then the Galois group G of $\mathcal{L}\left(u, \chi_{f}\right)$ is not maximal $\subsetneq W_{2 g}=\mathfrak{S}_{g} \ltimes(\mathbb{Z} / 2 \mathbb{Z})^{g}$ (Girstmair's method).

Sketch of proof when $g \geq 2$

- Step 1 ("Geometric" condition): If $\mathcal{L}\left(u, \chi_{f}\right)$ doesn't satisfy LI_{π}, then the Galois group G of $\mathcal{L}\left(u, \chi_{f}\right)$ is not maximal $\subsetneq W_{2 g}=\mathfrak{S}_{g} \ltimes(\mathbb{Z} / 2 \mathbb{Z})^{g}$ (Girstmair's method).
- Step 2 (Group theory): Either G doesn't act transitively on the roots, or G doesn't contain a transposition, or the projection $p(G)$ of G on \mathfrak{S}_{g} doesn't contain a transposition, or $p(G)$ doesn't contain any m-cycle with $m>g / 2$ prime.

Sketch of proof when $g \geq 2$

- Step 1 ("Geometric" condition): If $\mathcal{L}\left(u, \chi_{f}\right)$ doesn't satisfy LI_{π}, then the Galois group G of $\mathcal{L}\left(u, \chi_{f}\right)$ is not maximal $\subsetneq W_{2 g}=\mathfrak{S}_{g} \ltimes(\mathbb{Z} / 2 \mathbb{Z})^{g}$ (Girstmair's method).
- Step 2 (Group theory): Either G doesn't act transitively on the roots, or G doesn't contain a transposition, or the projection $p(G)$ of G on \mathfrak{S}_{g} doesn't contain a transposition, or $p(G)$ doesn't contain any m-cycle with $m>g / 2$ prime.
- Step 3 ("Counting"): Kowalski's large sieve for Frobenius and a trick due to Chavdarov provide an upper bound of the form

$$
\ll p, g H_{1}^{-1}+H_{2}^{-1}+H_{3}^{-1}+H_{4}^{-1}
$$

where each H_{i} is given by a sum of cardinalities of appropriate sets of polynomials $P \in \mathbb{F}_{\ell}[T], \ell \neq 2, p$ prime, satisfying properties related to Step 2.

Sketch of proof when $g \geq 2$

- Step 1 ("Geometric" condition): If $\mathcal{L}\left(u, \chi_{f}\right)$ doesn't satisfy LI_{π}, then the Galois group G of $\mathcal{L}\left(u, \chi_{f}\right)$ is not maximal $\subsetneq W_{2 g}=\mathfrak{S}_{g} \ltimes(\mathbb{Z} / 2 \mathbb{Z})^{g}$ (Girstmair's method).
- Step 2 (Group theory): Either G doesn't act transitively on the roots, or G doesn't contain a transposition, or the projection $p(G)$ of G on \mathfrak{S}_{g} doesn't contain a transposition, or $p(G)$ doesn't contain any m-cycle with $m>g / 2$ prime.
- Step 3 ("Counting"): Kowalski's large sieve for Frobenius and a trick due to Chavdarov provide an upper bound of the form

$$
\ll p, g H_{1}^{-1}+H_{2}^{-1}+H_{3}^{-1}+H_{4}^{-1}
$$

where each H_{i} is given by a sum of cardinalities of appropriate sets of polynomials $P \in \mathbb{F}_{\ell}[T], \ell \neq 2, p$ prime, satisfying properties related to Step 2.

- For the case $g=2$, we get an improvement thanks to a result of Ahmad-Shparlinski: if LI_{π} fails then the Jacobian of C_{f} splits over $\overline{\mathbb{F}_{q}}$.

Failure of $L I_{\pi}$ is not the end of the story

- Example (Cha): $p=3, M=T^{3}+2 T+1$ irreducible. Then

$$
\begin{aligned}
& \mathcal{L}\left(u, \chi_{M}\right)=3 u^{2}-3 u+1=\left(1-\sqrt{3} e^{\frac{i \pi}{6}}\right)\left(1-\sqrt{3} e^{\frac{-i \pi}{6}}\right) \text { and we have } \\
& d\left(\mathcal{P}_{M ; \boxtimes, \square}\right) \approx 58,3 \%>\frac{1}{2} .
\end{aligned}
$$

Failure of $L I_{\pi}$ is not the end of the story

- Example (Cha): $p=3, M=T^{3}+2 T+1$ irreducible. Then $\mathcal{L}\left(u, \chi_{M}\right)=3 u^{2}-3 u+1=\left(1-\sqrt{3} e^{\frac{i \pi}{6}}\right)\left(1-\sqrt{3} e^{\frac{-i \pi}{6}}\right)$ and we have $d\left(\mathcal{P}_{M ; \boxtimes, \square}\right) \approx 58,3 \%>\frac{1}{2}$.
- We want to identify "pathologic" configurations that are not necessarily implied by the failure of LI_{π}

Failure of $L I_{\pi}$ is not the end of the story

- Example (Cha): $p=3, M=T^{3}+2 T+1$ irreducible. Then

$$
\begin{aligned}
& \mathcal{L}\left(u, \chi_{M}\right)=3 u^{2}-3 u+1=\left(1-\sqrt{3} e^{\frac{i \pi}{6}}\right)\left(1-\sqrt{3} e^{\frac{-i \pi}{6}}\right) \text { and we have } \\
& d\left(\mathcal{P}_{M ; \boxtimes, \square}\right) \approx 58,3 \%>\frac{1}{2} .
\end{aligned}
$$

- We want to identify "pathologic" configurations that are not necessarily implied by the failure of LI_{π} : complete bias, reversed bias and lower order bias.

Explicit formulas

- We have access to explicit formulas for $\Pi\left(n ; \chi_{f}\right)$:

Explicit formulas

- We have access to explicit formulas for $\Pi\left(n ; \chi_{f}\right)$:

$$
\begin{aligned}
\Pi\left(n ; \chi_{f}\right) & =-\left(m_{0}\left(\chi_{f}\right)+\frac{1}{2}\right)-\left(m_{\pi}\left(\chi_{f}\right)+\frac{1}{2}\right)(-1)^{n} \\
& -\sum_{\theta_{j} \neq 0, \pi} m_{\theta_{j}}\left(\chi_{f}\right) e^{i n \theta_{j}\left(\chi_{f}\right)}+O_{f}\left(q^{-\frac{n}{6}}\right),
\end{aligned}
$$

where $m_{\theta}\left(\chi_{f}\right)$ is the multiplicity of $\sqrt{q} e^{i \theta}$ as a zero of $\mathcal{L}\left(u, \chi_{f}\right)$.

Explicit formulas

- We have access to explicit formulas for $\Pi\left(n ; \chi_{f}\right)$:

$$
\begin{aligned}
\Pi\left(n ; \chi_{f}\right) & =-\left(m_{0}\left(\chi_{f}\right)+\frac{1}{2}\right)-\left(m_{\pi}\left(\chi_{f}\right)+\frac{1}{2}\right)(-1)^{n} \\
& -\sum_{\theta_{j} \neq 0, \pi} m_{\theta_{j}}\left(\chi_{f}\right) e^{i n \theta_{j}\left(\chi_{f}\right)}+O_{f}\left(q^{-\frac{n}{6}}\right),
\end{aligned}
$$

where $m_{\theta}\left(\chi_{f}\right)$ is the multiplicity of $\sqrt{q} e^{i \theta}$ as a zero of $\mathcal{L}\left(u, \chi_{f}\right)$.

- We let

$$
\Delta_{f}(n):=\left(m_{0}\left(\chi_{f}\right)+\frac{1}{2}\right)+\left(m_{\pi}\left(\chi_{f}\right)+\frac{1}{2}\right)(-1)^{n}+\sum_{\theta_{j} \neq 0, \pi} m_{\theta_{j}}\left(\chi_{f}\right) e^{i n \theta_{j}\left(\chi_{f}\right)}
$$

Explicit formulas

- We have access to explicit formulas for $\Pi\left(n ; \chi_{f}\right)$:

$$
\begin{aligned}
\Pi\left(n ; \chi_{f}\right) & =-\left(m_{0}\left(\chi_{f}\right)+\frac{1}{2}\right)-\left(m_{\pi}\left(\chi_{f}\right)+\frac{1}{2}\right)(-1)^{n} \\
& -\sum_{\theta_{j} \neq 0, \pi} m_{\theta_{j}}\left(\chi_{f}\right) e^{i n \theta_{j}\left(\chi_{f}\right)}+O_{f}\left(q^{-\frac{n}{6}}\right),
\end{aligned}
$$

where $m_{\theta}\left(\chi_{f}\right)$ is the multiplicity of $\sqrt{q} e^{i \theta}$ as a zero of $\mathcal{L}\left(u, \chi_{f}\right)$.

- We let

$$
\Delta_{f}(n):=\left(m_{0}\left(\chi_{f}\right)+\frac{1}{2}\right)+\left(m_{\pi}\left(\chi_{f}\right)+\frac{1}{2}\right)(-1)^{n}+\sum_{\theta_{j} \neq 0, \pi} m_{\theta_{j}}\left(\chi_{f}\right) e^{i n \theta_{j}\left(\chi_{f}\right)}
$$

- Under LI_{π}, we have $1 / 2<d\left(\Delta_{f}(n)>0\right)<1$.

Complete bias

- We say $\Pi\left(n ; \chi_{f}\right)$ exhibits a complete bias when $d\left(\Delta_{f}(n)>0\right)=1$.

Complete bias

- We say $\Pi\left(n ; \chi_{f}\right)$ exhibits a complete bias when $d\left(\Delta_{f}(n)>0\right)=1$.
- For each square q, we can find $f \in \mathcal{H}_{3}\left(\mathbb{F}_{q}\right)$ such that $\Pi\left(n ; \chi_{f}\right)$ exhibits a complete bias: it is enough to have $\mathcal{L}(u, \chi)=(1-\sqrt{q} u)^{2}$.

Complete bias

- We say $\Pi\left(n ; \chi_{f}\right)$ exhibits a complete bias when $d\left(\Delta_{f}(n)>0\right)=1$.
- For each square q, we can find $f \in \mathcal{H}_{3}\left(\mathbb{F}_{q}\right)$ such that $\Pi\left(n ; \chi_{f}\right)$ exhibits a complete bias: it is enough to have $\mathcal{L}(u, \chi)=(1-\sqrt{q} u)^{2}$.

Theorem (B.-Devin-Keliher-Li, 2024).

We have

$$
\frac{1}{\# \mathcal{H}_{n}\left(\mathbb{F}_{q}\right)} \#\left\{f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right) \mid \Pi\left(n ; \chi_{f}\right) \text { exhibits a complete bias }\right\} \ll_{g, p} \frac{\log q}{q^{2 \varepsilon_{g}}}
$$ where $\varepsilon_{g}=\frac{1}{4 g^{2}+2 g+4}$.

Complete bias

- Step 1: If $d\left(\Delta_{f}>0\right)=1$, then $d\left(\Delta_{f}(2 n)>0\right)=d\left(\Delta_{f}(2 n+1)>0\right)=1$, and thanks to a variance inequality, we show that $m_{0}\left(\chi_{f}\right)>m_{\pi}\left(\chi_{f}\right)$ (and in particular q is a square).

Complete bias

- Step 1: If $d\left(\Delta_{f}>0\right)=1$, then $d\left(\Delta_{f}(2 n)>0\right)=d\left(\Delta_{f}(2 n+1)>0\right)=1$, and thanks to a variance inequality, we show that $m_{0}\left(\chi_{f}\right)>m_{\pi}\left(\chi_{f}\right)$ (and in particular q is a square).
- Step 2: Trivial upper bound $\#\left\{f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right) \mid d\left(\Delta_{f}>0\right)=1\right\} \leq \#\left\{f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right) \mid m_{0}\left(\chi_{f}\right)>0\right\}$.

Complete bias

- Step 1: If $d\left(\Delta_{f}>0\right)=1$, then $d\left(\Delta_{f}(2 n)>0\right)=d\left(\Delta_{f}(2 n+1)>0\right)=1$, and thanks to a variance inequality, we show that $m_{0}\left(\chi_{f}\right)>m_{\pi}\left(\chi_{f}\right)$ (and in particular q is a square).
- Step 2: Trivial upper bound

$$
\#\left\{f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right) \mid d\left(\Delta_{f}>0\right)=1\right\} \leq \#\left\{f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right) \mid m_{0}\left(\chi_{f}\right)>0\right\}
$$

- Step 3: We use the previous large sieve method to reduce the problem to counting

$$
\left\{P \in \mathbb{F}_{\ell}[T] \text { monic } \mid \operatorname{deg} P=2 g, P(X)=q^{-g} X^{2 g} P\left(\frac{q}{X}\right), P(\sqrt{q})=0\right\}
$$

for all $\ell \neq 2, p$.

Lower order bias

- We say $\Pi\left(n ; \chi_{f}\right)$ exhibits a lower order bias when $d\left(\Delta_{f}(n)=0\right)>0$.

Lower order bias

- We say $\Pi\left(n ; \chi_{f}\right)$ exhibits a lower order bias when $d\left(\Delta_{f}(n)=0\right)>0$.
- For each odd q, we can find $f \in \mathcal{H}_{5}\left(\mathbb{F}_{q}\right)$ or $f \in \mathcal{H}_{6}\left(\mathbb{F}_{q}\right)$ (genus 2) such that $\Pi\left(n ; \chi_{f}\right)$ exhibits a lower order bias: it is enough that $\mathcal{L}\left(u, \chi_{f}\right)$ is even.

Lower order bias

- We say $\Pi\left(n ; \chi_{f}\right)$ exhibits a lower order bias when $d\left(\Delta_{f}(n)=0\right)>0$.
- For each odd q, we can find $f \in \mathcal{H}_{5}\left(\mathbb{F}_{q}\right)$ or $f \in \mathcal{H}_{6}\left(\mathbb{F}_{q}\right)$ (genus 2) such that $\Pi\left(n ; \chi_{f}\right)$ exhibits a lower order bias: it is enough that $\mathcal{L}\left(u, \chi_{f}\right)$ is even.

Theorem (B.-Devin-Keliher-Li, 2024).

We have

$$
\frac{1}{\# \mathcal{H}_{n}\left(\mathbb{F}_{q}\right)} \#\left\{f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right) \mid \Pi\left(n ; \chi_{f}\right) \text { exhibits a lower order bias }\right\} \ll_{g, p} \frac{\log q}{q^{2 \varepsilon_{g}}}
$$ where $\varepsilon_{g}=\frac{1}{4 g^{2}+2 g+4}$.

Lower order bias

- Step 1: If $d\left(\Delta_{f}=0\right)>0$ then in particular $\left\{n \in \mathbb{N} \mid \Delta_{f}(n)=0\right\}$ is infinite.

Lower order bias

- Step 1: If $d\left(\Delta_{f}=0\right)>0$ then in particular $\left\{n \in \mathbb{N} \mid \Delta_{f}(n)=0\right\}$ is infinite. But Δ_{f} is a linear recurrence sequence!

Lower order bias

- Step 1: If $d\left(\Delta_{f}=0\right)>0$ then in particular $\left\{n \in \mathbb{N} \mid \Delta_{f}(n)=0\right\}$ is infinite. But Δ_{f} is a linear recurrence sequence!
- Step 2: A linear recurrence sequence which vanishes infinitely many times is degenerate (Skolem-Mahler-Lech theorem) : it has two characteristic roots $\beta_{i} \neq \beta_{j}$ such that $\frac{\beta_{i}}{\beta_{j}}$ is a root of unity.

Lower order bias

- Step 1: If $d\left(\Delta_{f}=0\right)>0$ then in particular $\left\{n \in \mathbb{N} \mid \Delta_{f}(n)=0\right\}$ is infinite. But Δ_{f} is a linear recurrence sequence!
- Step 2: A linear recurrence sequence which vanishes infinitely many times is degenerate (Skolem-Mahler-Lech theorem) : it has two characteristic roots $\beta_{i} \neq \beta_{j}$ such that $\frac{\beta_{i}}{\beta_{j}}$ is a root of unity.
- Step 3: We use Kowalski's sieve to reduce the problem to counting the cardinality of

$$
\begin{aligned}
&\left\{P \in \mathbb{F}_{\ell}[T] \text { unitaire } \mid \operatorname{deg} P=2 g, P(X)=q^{-g} X^{2 g} P\left(\frac{q}{X}\right)\right. \\
&\left.\exists \alpha \neq \beta \in \overline{\mathbb{F}_{\ell}}, P(\alpha)=P(\beta)=0 \text { with }\left(\frac{\alpha}{\beta}\right)^{d}=1\right\}
\end{aligned}
$$

for every prime $\ell \neq 2, p$.

Reversed bias

- We say $\Pi\left(n ; \chi_{f}\right)$ exhibits a reversed bias when $d\left(\Delta_{f}(n) \leq 0\right)>\frac{1}{2}$.

Reversed bias

- We say $\Pi\left(n ; \chi_{f}\right)$ exhibits a reversed bias when $d\left(\Delta_{f}(n) \leq 0\right)>\frac{1}{2}$.
- For each odd square q, we can find $f \in \mathcal{H}_{5}\left(\mathbb{F}_{q}\right)$ or $f \in \mathcal{H}_{6}\left(\mathbb{F}_{q}\right)$ (genus 2) such that $\Pi\left(n ; \chi_{f}\right)$ exhibits a reversed bias: it is enough to have $\mathcal{L}\left(u, \chi_{f}\right)=\left(1-u \sqrt{q}+u^{2} q\right)^{2}$.

Reversed bias

- We say $\Pi\left(n ; \chi_{f}\right)$ exhibits a reversed bias when $d\left(\Delta_{f}(n) \leq 0\right)>\frac{1}{2}$.
- For each odd square q, we can find $f \in \mathcal{H}_{5}\left(\mathbb{F}_{q}\right)$ or $f \in \mathcal{H}_{6}\left(\mathbb{F}_{q}\right)$ (genus 2) such that $\Pi\left(n ; \chi_{f}\right)$ exhibits a reversed bias: it is enough to have $\mathcal{L}\left(u, \chi_{f}\right)=\left(1-u \sqrt{q}+u^{2} q\right)^{2}$.

Theorem (B.-Devin-Keliher-Li, 2024).

We have
$\frac{1}{\# \mathcal{H}_{n}\left(\mathbb{F}_{q}\right)} \#\left\{f \in \mathcal{H}_{n}\left(\mathbb{F}_{q}\right) \mid \Pi\left(n ; \chi_{f}\right)\right.$ exhibits a lower order bias $\}<_{g, p} \frac{(\log q)^{1-\delta_{g}}}{q^{\varepsilon_{g}}}$ where $\varepsilon_{g}=\frac{1}{4 g^{2}+2 g+4}$ and $\delta_{g} \underset{g \rightarrow+\infty}{\sim} \frac{7}{24 g}>\frac{1}{4 g}$.

Reversed bias

- Step 1: If $d\left(\Delta_{f} \leq 0\right)>\frac{1}{2}$ then the distribution of the values of Δ_{f} is not symmetric with respect to its mean value $m_{0}\left(\chi_{f}\right)+\frac{1}{2}>0$, so the torus generated by $\left\{\left(n \pi, n \theta_{1}\left(\chi_{f}\right), \ldots, n \theta_{g}\left(\chi_{f}\right)\right) \mid n \in \mathbb{N}\right\}$ in $(\mathbb{R} / \mathbb{Z})^{g+1}$ doesn't contain the central point (π, \ldots, π).

Reversed bias

- Step 1: If $d\left(\Delta_{f} \leq 0\right)>\frac{1}{2}$ then the distribution of the values of Δ_{f} is not symmetric with respect to its mean value $m_{0}\left(\chi_{f}\right)+\frac{1}{2}>0$, so the torus generated by $\left\{\left(n \pi, n \theta_{1}\left(\chi_{f}\right), \ldots, n \theta_{g}\left(\chi_{f}\right)\right) \mid n \in \mathbb{N}\right\}$ in $(\mathbb{R} / \mathbb{Z})^{g+1}$ doesn't contain the central point (π, \ldots, π).
- Step 2: We show this is equivalent to $k_{0} \pi+\sum_{j=1}^{g} k_{j} \theta_{j}\left(\chi_{f}\right) \equiv 0 \bmod 2 \pi$ with $k_{0}, \ldots, k_{g} \in \mathbb{Z}$ with even sum.

Reversed bias

- Step 1: If $d\left(\Delta_{f} \leq 0\right)>\frac{1}{2}$ then the distribution of the values of Δ_{f} is not symmetric with respect to its mean value $m_{0}\left(\chi_{f}\right)+\frac{1}{2}>0$, so the torus generated by $\left\{\left(n \pi, n \theta_{1}\left(\chi_{f}\right), \ldots, n \theta_{g}\left(\chi_{f}\right)\right) \mid n \in \mathbb{N}\right\}$ in $(\mathbb{R} / \mathbb{Z})^{g+1}$ doesn't contain the central point (π, \ldots, π).
- Step 2: We show this is equivalent to $k_{0} \pi+\sum_{j=1}^{g} k_{j} \theta_{j}\left(\chi_{f}\right) \equiv 0 \bmod 2 \pi$ with $k_{0}, \ldots, k_{g} \in \mathbb{Z}$ with even sum.
- Step 3: The quantity $(-1)^{k_{0}} \prod_{j=1}^{g} \alpha_{j}\left(\chi_{f}\right)_{j}^{k} \in \mathbb{Z}$, is fixed by G. This implies that the sequence Δ_{f} is degenerate, or G doesn't contain certain types of permutations.

Reversed bias

- Step 1: If $d\left(\Delta_{f} \leq 0\right)>\frac{1}{2}$ then the distribution of the values of Δ_{f} is not symmetric with respect to its mean value $m_{0}\left(\chi_{f}\right)+\frac{1}{2}>0$, so the torus generated by $\left\{\left(n \pi, n \theta_{1}\left(\chi_{f}\right), \ldots, n \theta_{g}\left(\chi_{f}\right)\right) \mid n \in \mathbb{N}\right\}$ in $(\mathbb{R} / \mathbb{Z})^{g+1}$ doesn't contain the central point (π, \ldots, π).
- Step 2: We show this is equivalent to $k_{0} \pi+\sum_{j=1}^{g} k_{j} \theta_{j}\left(\chi_{f}\right) \equiv 0 \bmod 2 \pi$ with $k_{0}, \ldots, k_{g} \in \mathbb{Z}$ with even sum.
- Step 3: The quantity $(-1)^{k_{0}} \prod_{j=1}^{g} \alpha_{j}\left(\chi_{f}\right)_{j}^{k} \in \mathbb{Z}$, is fixed by G. This implies that the sequence Δ_{f} is degenerate, or G doesn't contain certain types of permutations.
- Step 4: By Dedekind's theorem, this means that $\mathcal{L}\left(u, \chi_{f}\right)$ doesn't admit certain types of factorizations modulo large enough primes ℓ and we conclude using the large sieve and some combinatorics on polynomials over finite fields.

Thank you for your attention!

