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Typical and Atypical values of
some numbertheoretic functions

This minicoure isintended to be

a high level overa ofmany
important results taking place at
the intersection of number theory
and probability. Some of what is
covered is classical

,
whilst others have

appeared in recent years.

These notes have been heavilyinfluenced
and inspired by many authors , and
I direct the interested reader to
their excellent resources including
(but not limited to ! )

Elliot
,
Tenenbaum

, Koukoulopoulos,



Kowalski, Harper (particularly the
Bourbaki notes)

Finally I have also created
a Jupyter notebook with various

exercises/plots included. The
am of the notebook is to be able
to visualise some of the results
mentioned henceforth . It is available

on Github under

ecbaile/pnt-exercises
.



Section 1 Melassical results in NT and

PNT
.

Looking herward : By the end of this
mini-course

,
I well explain some of

the fundamental ideas behind
recent process in understanding↓

atypical values of the Reemann 3-f"

All relevant number theoretic ideas

will be introduced. Many of the
ideas apply much morewidely
Ce . g . atypical values of characteristic

polynomials) and come from probability.
One of the key themes of the

course is understanding the

following picture :



This is a plot of 5000 values of

Re(log 3(2 + iM)
where 7-Unif [10°, 2x100] .

Try to recreate it yourself !Where
w be a link to a Google Cab
file where you can run through
the code used to produce the

images in this course .)



Related questions are therefore :
· Does the random variable

x = Re(log3( + in)
her 1-Umf [T, 25] satisfy a CLT ?

· What implications does this have

her 3(s) ?

· what about atypical values
Ce . g . those beyond the standard
deviation) ?

First
,
some introductory results from

probabilistic number theory .

Def A function f : NN-C is additive of
f(ab) = f(a) + f(b)

whenever a and b are coprime.m

If the property holds for att a ,
b then



I is said to be

completelyadditive↳ This means that

it is sufficient to understand the

value of f at the prime powers
f(n) = 1 f(p: :)

i= 1

ifi's prime factorisation is p - -- par
As Two useful antrimetic functions are
-W(n) = 21

plu
additive

= #Eprme factors of n without
multiplicity

-W(n) = 21
pP/n

completely = #Eprme factors of n with
additive

multiplicity
So if n= p:" ... par then
w(n) = r zr(n)=



Here are some plots of the first few
values of W(n) , WW(n) :

- If I pick an integer at random,
how many distinct prme factors will
it have ?

In the notation above
,
what is

EN [W]
where the expectation is with

respect to the discrete unform dist



on E1..., N3 for some large N !

The answer to this question is
due to Kac land we will learn even

more aboutw through the Erdos-Kac
theorem shortly).

C f be additive. Then for &N,

f(x) = f(p)Alph exactly divides is
Hence, can we first understand the
likelihood of a given set of prime
powers dividinga givenIntegr.
PN (p,

"
/In and In and .... "In

& discrete unit
on E1,.., N3

Assume P-- , Pr distinct



ki

=# REN : Pin for it, .,

but pet- for i) ..., r3

So we want the number of REN s - t.

kit
her i= 1..., butn is indivisible by Pi

divisible by all Pic PY---., Pi
So think of breaking N up in to

multiples of port " Within each block,
there are exactly

$(Pi-Pr) = (p - 1) - -- (p - 1)

such values (see below for an example)
and hence the above is

~integer part
N

= # Prit! - Parti 0(RP) +E Eo(pip)KittPi
m #good -
#blocks its per block fractional

part
C for distinct Pi--, Pr and positive into K,--, Kr .)



N = 100
, p = 22

, P = 3 How many naloo

are there such that 4/ and 3/n but

87 n unor does on ?

Divide in to blocks of p.s Palat = 72 :

12345678 ..... 676869707172

E
73747576 . - - - 94959697984100

~ In the top block there are petcket Pe
candidates for integers divisible by both
pland Chence by ppa". Il-ow many
of these multiples are themselves

T

I

divisible by p+ or Pak+ 1 ?
·

Suppose for 1 MEPP2

pilit mopPlopake = PI M

and similarly for P2



So the "bad" options amongst kmPP2
are those multiples of PicP2- Not over-

countingwe get PiP2-12 - P1
+ 1 = (p-D(2-1).

Scaling up to general p!... por we see
that we want the integers /EaEP"Pr
that are coprime to p ...,Pri .e .

& (pi-Pr) = PiPr (-) ...(If
= (p- 1) .... (p - 1)

↑ Zulertotieriz fr .

Overall therefore there are two values

between 1 and 72 s .t . 4/n , 3/n but

oth , oth ,
and between 73 and 100

we find one extra value (84).



Therefore
r

PN),espeiteract
de

MP(Pi) + O(X(PR-

1

i= 1 p.
Kit

as x= [x] +2x3

and <x3 -[0 , )

Thus
, I (Pi-Pr) = O(PiP) is smallN

then we effectively have

IW)EEp,"'In 3) = FAN)pRil
=> effectively independence
for different primes !

and since if f is additive and n= p"- Par

f(n) = &f(pi) = [in Eas f(pa) 1/4 p In3

if n is drawn randomly from 51
....,

N3 then

f is etely theofindependent
variables.
-

f(n) =& frn)
=: <

,

f(p4)Api ne



We can thenhend the corresponding
expectation :

Lemma Let f : N -> & be additive , then

Ex[1] = [ f(p4P(p) + O K It(ph
PRKN

sum over all primes and their
powers below N

In particular , if we take WiN-C
as the additive function then
-In[w] =

N
-#)

+Ex-2(l-+)
..... +Ok,N)

=2 + 0(1)
PEN

Then applying Merten's (second) theorem

&N # = loglogN + O(I)

means



[tr[w] -loglogN
Fie

a random enteger typically has
loglogN distinct prime factors

Outline' of proof of the Lemma :
Find use linearity of expectation on

f using its additive structure to get
En [f] = & [ f(pY)Ph(p"/(n)

PEN R> I

PREN



Then use the previously derived expressor

to the probability-
As may be inspired by the plot, one

may ask about the variance of win)
land more generally additive f(n)'s).
Thm (Hardy-Ramanujan) "Most numbers-
N have about loglogN prime factors"
↳ W(n) has "normal order" legleg N

q

· In (win) - loglegN < VIN)VloglogN)
( < I

f(x) g(x) if (f()) (g(x) VIN)2

for any VIN) < 1.

This was originally proved (non-

"Probabilistically by Hardy and Ramanyan
A very nice and succinct proof follows



grichly from the Turan-Kubilius (neg :

Thm Turan-Kubius inequality
If f is an additive function

,

then

En[f-fr[f] & If(pY) R

I

PREN P
k

Weomit the proof though it is a reasonably
straightforward manipulation of the LHS,
considering the contribution of different
prme' powers in Er[P] .

From this
,
the statement that "mostintegers

N have about loglogN prime factors"
follows : Trably,

· prev
Lemma

En[Iw-leglogNI] = Er[Iw-En[w] + Oll)
:]

- -EN + O(K)

- Mertens
leglog N



So by Markov/Chebyther :

In (Iw-leglegN/VIN)NloglegN)
& Ar[Iw-leglogN/]

VIN) logleg N

W -

finally her this introduction
,
we'll see

the beautiful refinement of
the above due to Ardos-Kac.
So far we understand the find and
second moments of W(n) for n uniform :

En [w] -legleg N

Var [W] Loglog N

Erdos-Kac proved a beautiful
improvement of the above, showing
W(n)

, shibably normalized , is Gaussian



Thm (Erdies-Kac) Take n uniformly
from 21--

,
N3

-

Then

w(n) - loglogN -> er(o)
Vlogleg N N- CA

where the convergence is in law.

↳ Thetheorem can be generalized to
premit more general additive functions,
though not all (e .g. Lindeberg's condition
should be satisfied)

↳Turan understood that since win) can
be thought of as a sum of essentially
Independent r .. & W(p") 14p"/In3 (
then a CLT"should hold"

-

· following a lecture in which Erdos
was in attendance, Kac and Erdos established
the above result (using fairly sophisticated
number theoretic tool - the Brunsieve).

Arguably the most popular way to prove
Erdos-Kac is to use the method of moments
Li. e . show themoments of win) match these
of the Gaussian).



This idea was used by Bilingsley, Calso
Gramille &f Soundararajan, Harper) who relied
onwork of Delange and Halberstam .

Many clear profs can be found in these

references (also Kowalski, Koukoulopoulos et.

References : Titchmarsh,
At crash course in 3(s) Edwards

,
intere refs .

Before progressing , let's lay some of
the number theoretic groundwork for
studying 3.

Def The Rizeta fronis

3(s) =
zi is far Re(s) > 1

.

The connection to prime numbers is

perhaps most simply seen through
applying the fundamental theorem of



arithmetic to the above :

⑭ = 1 + 2 i Ast -...
n > 1 :

((n) = 1 Wa(n) =2

- Itigst .....

= Mi + + test -- -

p

= ↑ (ts)
= R(1 - -b)

p

So for Relsk 1

3(s) = = M(1-b)
- -

Dirichlet fuler productseries

We can analytically continue 3(s) in
s
, progressively covering the whole plane



Mitchmarth reviews a host ofmethods

for the continuation) : List notice
n

& is = Nf(N) - I
,
"f'()(c)a

* f(x) = xS

partial summation
I I + s & "TodeeNS-I

-Yst + is (i+ - 1) - s&S3d
-> se -

s 9
, 0ScBd

N-> Co

Rels1

& this however is valid meromorphically
for Re(s) > O , so this deferries 3/s)
for this half plane.

continuing the continuation , onemay find
an integral expression for 3(s) defining o

Menomorphic continuation to K. The only pole
is at s = 1 (residue 1). Further

,
the follow-

-ing "functieral equation" holds for all sek

3(s) = 27 sin(er)((l
- s)3(1 -3)



↳ so 3(-2n) = 0 for all MeIN

↳ Alsoimplies that the only other places 3(s)=0

he in Rels)e[O ,
B

If 31s) = 0 har some Reisk 1 Even M(1-is)" = 0
but since each local tern is bounded away

from 0 (p is of course at least 2) this cannot hold. .

Then use that 3(1-s) = X/s)3(s) to conclude .

↳ In fact showing all other zeros he in

Rels)t(0 , 1) is equivalent to showing
M(x) = S 1 n SC LPrime number

PEX logs theorem)

conjecture (Remain hypothesis) All Jeros
of 3/s) are of the form s= -22 , MeN Citrivial

zeros") or S =- + it , teR ("non-trivial Zeros")

Let's apply some similarideas to those

applied to Ardos Kac to understand



3 "probabilistically" , first in the

half-plane of convergence.

Writer8 = 0 + it Cr
.
b.
. unfortunately

number theoretic and probabilistic
notation sometimes clashes. It is very
commonto write o for the real part of
the argument of 3 , not to be confused
won the soon to come-standard dev. )
Let a I so we are in the region
of convergence. Then Let's consider

deg] (0+ it) = log M(1-po-it
=

-[log(l-po-ite
= [ 2 jRlotit)

P R> I R

which is an absolutely convergent (doubles
->


