Montréal Summer,

Mypical and Atypical values of some number theoretic functions

This minicouse is intended to be a high level oversew of many important results taking place at tone intersection of number theory and probability. Some of what is covered is classical, whilst others have appeared in recent years.
These notes have been heavily influenced and inspired by many author's, and I direct the interested reader to their excellent resources including (but inst limited to!)

Eliolt, Menenbaum, Koukoulopoulos,

Kowalski, Harper (particulaly the bourbake noles)
ofinally i have aloo created a fupyter nolebode unin vanious exercises / plots included. The aum of the indelook is to be able to vsualise some of the tesults mentioned henceforth. It is available on Github under
ecbaile/pnt-exercises.

Section 1 Classical results in NT and PVT.
Looking forward: By the end of this mini-couse, l ul explain some of the fundamental ideas loehind recent process in understanding atypical values of the Reemann 3 - $f^{n}$ Ail relevant number theoretic ideas url be introduced. Many of the ideas apply much more widely. leg atypical values of charactenstic pdynomials) and come from probability. Ore of the key themes of tore cause is understanding the hollowing picture:


This is a plot of 5000 values of

$$
\operatorname{Re}\left(\log 3\left(\frac{1}{2}+i n\right)\right)
$$

where $4 \sim$ Uni $\left[10^{6}, 2 \times 10^{6}\right]$.
Ing to recreate it yourself! (Mere wu be a link to a Mprogle Colab file where you can sun through the code used to produce the images in this course.)

Related questions are therefore:

* Does the randan variable

$$
x=\operatorname{Re}\left(\log \zeta\left(\frac{1}{2}+i u\right)\right)
$$

fo Mu Unf[T,2T] satisfy a Ch?

* What implications does this have for 3(s)?
* that about atypical values Ce.g. those beyond the standard deviation)?
quot, some introductory results from probabilistic number theory.
Def it punctiar $f: \mathbb{N} \Rightarrow C$ is additive of

$$
f(a b)=f(a)+f(b)
$$

whenever $a$ and $b$ are coprume
If the property hods for all $a, b$ then

If is said to be completely additeve.
L Mhis means that of $l$ is additive then it is sufficients to understand the value of $f$ at the prume powers

$$
f(n)=\sum_{i=1} f\left(p_{i}^{a_{i}}\right)
$$

if n's prome factorisation is $p_{1}^{a_{1}} p_{r}^{a_{r}}$
Wo Mo useful antshimetic fuenctions are

$$
\begin{aligned}
& \underset{\operatorname{raditue}}{ } \omega(n)=\sum_{p / n} 1 \\
& =\text { \# }\{\text { prime factos of } n \text { untrout } \\
& \text { multrplicitys } \\
& \Gamma^{\Delta} \Delta(n)=\sum_{p^{\kappa} / n} 1 \\
& \begin{array}{l}
\text { Compleiely } \\
\text { odditive }
\end{array}=\# \text { \{prme factoos of } n \text { woth } \\
& \text { multrplicitys? } \\
& \text { So of } n=p_{1}^{a_{1}} \cdots p_{1}^{a_{c}} \text { then } \\
& w(n)=r \quad \Omega(n)=\sum_{i=1}^{\sum_{i}} a_{i}
\end{aligned}
$$

Here are some plots of the fut few values of $\omega(n), L \Omega(n)$ :


Q If 1 pick an integer at random, how many distinct pierre factors will it have?

In the notation above, what is

$$
\mathbb{E}_{N}[\omega]
$$

where the expectation is urn respect to the discrete lunforn dist
on $\{1, \ldots, N\}$ for some large $N$ ?
The answer to this question is due to Lac land we url Learn even more about $w$ through the frotos-xac theorem shortly).
let $f$ be additive. Then for $n \leqslant N$;

$$
f(n)=\sum_{p \leqslant N} \sum_{k \geqslant 1} f\left(p^{k}\right) d\left\{p^{k} \text { exactly divides } n\right\}
$$

Hence, can we first understand the likelihood of a given set of prime powers dividing a queen integer n?
$F$ exact div.
${\underset{\sim}{1}}^{P_{N}}\left(p_{1}^{k_{1}} \| n\right.$ and $p_{2}^{k_{2}} \| n$ and $\left.\cdots p_{r}^{k_{r}} \| n\right)$
4 discrete unit
Assume $p_{1}, \ldots$, pr distinct

$$
\begin{array}{r}
=\frac{1}{N} \#\left\{n \leqslant N: p_{i}^{k_{i}} \mid n \text { for } i=1, \ldots, r\right. \\
\\
\text { but } \left.p_{i}^{k_{i}+1} \nmid n \text { for } i=1, \ldots, 1\right\}
\end{array}
$$

fo we want the number of $n \leqslant N$ st.
$n$ is indivisible by $p_{i} k_{i}$ for $i=1, \ldots, r$ but divisible by all $P_{i}, P_{i}^{2}, \ldots, P_{i}^{k}$
So think of breaking $N$ up in to multiples of $p_{1}^{k_{1}+\cdots} P_{r}^{k_{1}+1}$. Within each block, there are exactly

$$
\phi\left(p_{1}-p_{r}\right)=\left(p_{r}-1\right) \cdots\left(p_{r}-1\right)
$$

such values (see below for an example)
and hence the above is
(for distinct P, P, Pr and postie int $k_{1}, \ldots, k_{r}$ )

Lx $N=100, p_{1}^{k_{1}}=2^{2}, p_{2}^{k_{2}}=3$ How many $n \leqslant 100$ are there such that $4 / n$ and $3 / n$ bit $8 \not 1 n$ un d does $9 / n$ ?
Divide in to blocks of $p_{1}^{k_{1}+1} \cdot p_{2}^{k_{2}+1}=72$ :

$$
\begin{aligned}
& 12345678 \ldots 676869707172 \\
& \left\{\begin{array}{l}
73 \\
74 \\
74 \\
75 \\
76
\end{array} \cdots 9495 \quad 96 \quad 97.9899100\right.
\end{aligned}
$$

In the top block there are $\frac{p_{1}^{k_{1}+1} p_{2}^{k_{2}+1}}{p_{1}^{k_{1} p_{2}^{k_{2}}}}=\mu_{1} p_{2}$ Candidates fer integers divisible by both $p_{1}^{k_{1}}$ and $p_{2}^{k_{2}}$ (hence by $p_{1}^{k_{1}} p_{2}^{k_{2}}$ ) How many of these multiples are themselves divisible by $p_{1}^{k_{1}+1}$ or $p_{2}^{k_{2}+1}$ ?
Suppose for $1 \leqslant m \leqslant p_{1} P_{2}$

$$
p_{1}^{k_{1}+1}\left|m \cdot p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \Rightarrow p_{1}\right| n
$$ and similarly for $P_{2}$

So the "bad" options amengot $1 \leqslant m \leqslant p_{1} p_{2}$ are those multiples of $p_{1}, p_{2}$. Not are counting we get $p_{1} p_{2}-p_{2}-p_{1}+1=\left(p_{1}-1\right)\left(p_{2}-1\right)$

Scaling up to general $p_{1}^{k_{1}} \cdots p_{r}^{k_{s}}$ we see that we want the integers $1 \leqslant a \leqslant p$ pi pr that are coprome to p,.., pr, ie.

$$
\begin{aligned}
\phi\left(p_{1}-p_{r}\right) & =p_{1}-p_{r}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) \\
& =\left(p_{1}-1\right) \cdots\left(p_{r}-1\right)
\end{aligned}
$$

Euler toting fa
Overall therefore there are two values between 1 and 72 s.t. $4 \mid n, 31 n$ but $8 \mathrm{tn}, 9 \not \mathrm{n}$, and between 73 and 100 we find one extra value (84).

$$
\begin{aligned}
& \begin{array}{l}
\text { Therefore Fixactly } \\
\mathbb{P}_{N}\left(\bigcap_{i=1}^{\prime}\left\{p_{i}^{k_{i}} \| n\right\}^{\text {divides }}=\Gamma_{i=1}^{r} \frac{\phi\left(p_{i}\right)}{p_{i}^{k_{i}+1}}+\theta\left(\frac{\phi\left(p_{i}-p_{i}\right)}{N}\right)\right. \\
\text { as } x=[x]+\{x\}
\end{array} \\
& \text { and }\{x\} \in[0,1] \\
& \text { Thus, if } \frac{\phi\left(p_{1} \cdots p_{r}\right)}{N}=\theta\left(\frac{p_{1} \cdots p_{r}}{N}\right) \text { is small }
\end{aligned}
$$ then we effectively shave

$$
\mathbb{P}\left(\bigcap_{N=1}^{n}\left\{p_{i}^{k_{i}} \| n\right\}\right) \approx \prod_{i=1}^{r} \mathbb{P}_{N}\left(p_{i}^{k_{i}} \| n\right)
$$

$\Rightarrow$ effectively independence hor different primés!
and since of $f$ is additive and $n=p_{1}^{a_{1}} p_{r}^{a_{r}}$

$$
f(n)=\sum_{i=1}^{r} f\left(p_{i}^{a_{i}}\right)=\sum_{p \leqslant n} \sum_{a \geqslant 1} f\left(p^{a}\right) \mathbb{1}\left\{p^{a} \| n\right\}
$$

if $n$ is drain randomly from $\{1, \ldots, N\}$. then If is effectively the sum of independent variables.

$$
f(n)=\sum_{p \leqslant N} f_{p}(n)=\sum_{a \geqslant 1} f\left(p^{a}\right) \|\left\{p^{a} \| n^{\}}\right.
$$

We can then find the comesponding expectation:
Lemma Let $f: N \rightarrow \mathbb{C}$ be additive, then

$$
\left.\mathbb{E}_{N}[f]=\sum_{p^{k} \leqslant N} f\left(p^{k}\right) \phi(p)\right)+\theta\left(\frac{1}{N} \sum_{\mathcal{k} \leqslant N}\left|f\left(p^{k}\right)\right|\right)
$$

sum over all primes and their
power below $N$
$\rightarrow$ In particular, if we take $\omega: \mathbb{N} \rightarrow \mathbb{C}$ as the additive function then

$$
\begin{aligned}
\mathbb{E}_{N}[\omega]= & \sum_{p \leqslant N} \frac{1}{p}\left(1-\frac{1}{p}\right) \\
& +\sum_{p \leqslant \sqrt{N}} \frac{1}{p^{2}}\left(1-\frac{1}{p}\right) \\
& +\cdots+\theta\left(\frac{1}{N} \sum_{p^{k} \leqslant N} 1\right) \\
= & \sum_{p \leqslant N} \frac{1}{p}+\theta(1)
\end{aligned}
$$

When applying Marten's (second) theorem

$$
\sum_{P \leqslant N} \frac{1}{P}=\log \log N+\theta(1)
$$

means

ie. a random integer typically has
loglog N distinct prime factors
Freq plot for the value of $\omega(n)$ for random $n$ in [1,10^8]


Outline of proof of the lemma: trio use linearity of expectation f using its additive stricture to get $\mathbb{E}_{N}[f]=\sum_{p \leqslant N} \sum_{\substack{k \geqslant 1 \\ p^{p} \leqslant N}} f\left(p^{k}\right) \mathbb{P}\left(p^{k} \| n\right)$

Then use the previously derived expression for the probability.
At may be inspired by the plot, one may ask about the variance of $\omega(n)$ (and more generally additive $f(n)_{s}^{\prime}$ ).
ohm (tardy-Ramanyjan)"Moot numbers $n \leqslant N$ have about loglog $N$ prime factor"
$\longrightarrow w(n)$ has "normal order" $\log \log N$

$$
\begin{aligned}
& \gtrless \mathbb{P}_{N}(|\omega(n)-\log \log N| \geqslant v(N) \sqrt{\log \log N}) \\
& \\
& \leqslant \frac{1}{V(N)^{2}}
\end{aligned}
$$

for any $\vee(N) \geqslant 1$.
This was originally proved (non-
"probabisutically") boy Hardy and Ramanuyan. A ven f nice and succinct proof follows
quickly from the Murán-Kubilius uneq:
Chm Muán-Kublius inequality
If $f$ is an additive function, then

$$
\mathbb{E}_{N}\left[\left|f-\mathbb{E}_{N}[p]\right|^{2}\right] \ll \sum_{p^{k} \leqslant N} \frac{\left|f\left(p^{k}\right)\right|^{2}}{p^{k}}
$$

We omit the proof though it is a reasonably orraightforward manipulation of the LHS, considering the contribution of different prone powers in $\mathbb{E}_{N}\left[l^{2}\right]$.
From this, the statement that "most integer SN have about loglog $N$ prime factors"
Wallows: Furoly, prev i lemma

$$
\begin{aligned}
& \mathbb{E}_{N}\left[|\omega-\log \log N|^{2}\right]=\mathbb{E}_{N}\left[\left|\omega-\mathbb{E}_{N}[\omega]+\theta(1)\right|^{2}\right] \\
& \quad T-K<\sum_{p^{k} \leqslant N} \frac{1}{p^{k}}+\theta(1) \\
& \Rightarrow \quad \text { Meters } \alpha<\operatorname{loglog} N
\end{aligned}
$$

So by Markov/Chetoyshev:

$$
\begin{aligned}
\mathbb{P}_{N}(|w-\log \log N| & \geqslant V(N) \sqrt{\log \log N)} \\
& \leqslant \frac{\mathbb{E}_{N}\left[|w-\log \log N|^{2}\right]}{V(N)^{2} \log \log N} \\
& <\frac{\frac{1}{V(N)^{2}}}{}
\end{aligned}
$$

finally hor this introduction, weill see the beautiful refinement of the above due ho frdós-Kac So Lar we understand the hero and second moments of $w(n)$ for $n$ uniform:

$$
\begin{aligned}
& \mathbb{E}_{N}[\omega] \sim \log \log N \\
& \operatorname{Var}[\omega]<\log \log N
\end{aligned}
$$

frdés-Kac proved a beautiful improvements of the above, showing' $\omega(n)$, suebably normalised, is Gaussian
ohm (frdös-Kac) Take $n$ uniformly from $\{1, \ldots, N\}$. Then

$$
\frac{w(n)-\log \log N}{\sqrt{\log \log N}} \underset{N \rightarrow \infty}{ } e V(0,1)
$$

where the convergence is in law.
The theorem can be generalised to premit more general additive functions, though not all (e q. Lindeberg's condition Shaula be satisfied)
$\rightarrow$ Murár underbiood thor since $w(n)$ car be thought of as a sum of eosenti ally independent IV. $\sum_{p \leqslant N}\left(\sum_{k=1} w\left(p^{k}\right) \mathcal{1}\left\{p^{k} \| n\right\}\right)$ then a CLT" "should had" pin

- following a lectrete in which rondos was in attendance, Kac and frrtös established the above result (using faery sophobicated number theoretic tools - the Bnensieve).
Arguably the most popular wall to prove findos-Kac is to lose the method of moments Lie know the moments of $w(n)$ march those of the faurdan).

This idea was used by follingsley, (also Evanerlle es Soundararajar, Hamper) who relied an work of flange and Halbersham. Many clear profs can be found in these references (also Kowaloki, Kaukaulopailos er).


The connection to prime numbers is perhaps most simply seen through applying the fundamental theorem of
arithmetic to the above:

$$
\begin{aligned}
\sum_{n \geqslant 1} \frac{1}{n^{s}} & =1+\sum_{n \geqslant 1} \frac{1}{n^{s}}+\sum_{n \geqslant 1} \frac{1}{n^{s}}+\cdots \\
& =1+\sum_{p \geqslant 1} \frac{1}{p^{s}}+\sum_{p(n)=1} \frac{1}{(p q)^{s}}+\cdots \\
& =\prod_{p}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{s s}}+\cdots\right) \\
& =\prod_{p} \sum_{k \geqslant 0}\left(\frac{1}{p^{s}}\right)^{k} \\
& =\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
\end{aligned}
$$

So for $\operatorname{Re}(s)>1$

$$
\zeta(s)=\underbrace{\sum_{n \geqslant 1} \frac{1}{n^{s}}}_{\text {Dirichlet. }}=\underbrace{\prod_{p}\left(\left(1-\frac{1}{p^{s}}\right)^{-1}\right.}_{\text {Euler product }}
$$

We can analytically continue $Z(s)$ en s, progiessuely covenng the whee plane
(Yitchmaion reviews a hoot of methods for the continuation.): fist notice

$$
\sum_{n=1}^{N} \frac{1}{n^{s}}=N f(N)-\int_{i}^{N} f^{\prime}(x)[x] \frac{d x}{f(x)=x^{-s}}
$$

$$
\begin{aligned}
\text { partial summation } & =\frac{1}{N^{s-1}}+s \int_{1}^{N} \frac{[x]}{x^{s+1}} d x \\
& =\frac{1}{N^{s-1}}+\frac{s}{1-s}\left(\frac{1}{N^{s-1}}-1\right)-s \int_{1}^{N} \frac{\left\{x x^{s} d x\right.}{x^{s+1}} \\
& { }_{\substack{N \rightarrow \infty \\
R(s)>1}} \frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{x\} d x}{x^{s+1}}
\end{aligned}
$$

2. this however is valid neromonophically
for $\operatorname{Re}(s)>0$, so this defenses $J(s)$ for this half plane.

Continuing the continuation, one may find an integral expression for $\xi(s)$ defining a meromorphic continuation to ©. The only pole is at $S=1$ (residue 1) Turtoner, the follow -ina "funcoieral equation" holds for all se $\mathbb{C}$

$$
\zeta(s)=2^{s} \eta^{s-1} \sin \left(\frac{s}{2} \eta\right) \Gamma(1-s) \zeta(1-s)
$$

$\measuredangle S \theta \quad 3(-2 n)=0$ for all $n \in \mathbb{N}$
$L$ Also Implies that the only other places $3(s)=0$ lie in $\operatorname{Re}(s) \in[0,1]$
If $J(s)=0$ for some $\operatorname{Re}(s)>1$ then $\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}=0$ but since each local berm is bounded away from O ( $p$ uss of were at leabr 2) this cannot hold. Then use that $Z(1-s)=X(s) Z(s)$ to conclude.
$\rightarrow$ In fact showing all other zeros lie in $\operatorname{Re}(s) \in(0,1)$ is equivalents to Sowing

$$
\eta(x)=\sum_{p \leqslant x} 1 \sim \frac{x}{\log x}
$$

(Prime number) theorem)
$\rightarrow$ Ronjectrue (Riemann hypothesis) All zeros of $J(s)$ are of the form $s=-2 n, n \in \mathbb{N}$ ("trivial zeros") or $S=\frac{1}{2}+i t, t \in \mathbb{R}$ ("nontrivial zeros")

Let's apply some ormilar ideas to those applied fo fordïskac to understand

I "probabristically", first in the half-plane of convergence.
Write $s=\sigma+$ it (nib. unfortunately number theoretic and probabilistic notation sometimes clashes. It is very common to wite $o$ for the Neal part of the argument of 3 , not to be confused ubs the - soon to come-shandard div, let $\sigma>1$ so we are in the region of convergence. Then let's consider

$$
\begin{aligned}
\log 3(\sigma+i t) & =\log _{p} \prod_{p}\left(1-p^{-\sigma-i t}\right)^{-1} \\
& =-\sum_{p} \log \left(1-p^{-\sigma-i t}\right) \\
& =\sum_{p} \sum_{k \geqslant 1} \frac{p^{-k(\sigma+i t)}}{k}
\end{aligned}
$$

which is an absdutely convergent (double) series

