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A number field K with a ring of integers O is called a Polya field, if the
Og-module of integer-valued polynomials on O has a regular basis, or equivalently
all its Bhargava factorial ideals are principal [1]. We generalize Leriche’s criterion [8]
for Pdlya-ness of Galois closures of pure cubic fields, to general Sz-extensions of (.
Also, we prove for a real (resp. imaginary) Pélya Ss-extension L of (), at most four
(resp. three) primes can be ramified. Moreover, depending on the solvability of unit
norm equation over the quadratic subfield of L, we determine when these sharp
upper bounds can occur.
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Theorem (Pélya, 1919)

A polynomial f(X) € Q[X] maps Z into Z if and only if it can be written as a
Z-linear combination of the polynomials

(X) X(X-1)(X-2) - (X—n+1)

- : n=0,1,2,---.

n n!
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Replace Q with an arbitrary number field K

Definition (Ring of integer valued polynomials)
Int(Ok) = {f € K[X] | (Ok) € Ok}
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Replace Q with an arbitrary number field K

Definition (Ring of integer valued polynomials)
Int(Ok) = {f€ K[X] | AOk) € Ok}

Proposition (Pélya, 1919)

Int(Ok) ~ @;~ IJn(Ok) (as Og-module), where

Jn(Ok) = {leading coefficients of f(X) € Int(Ok), deg(f) = n} U {0}

denotes the n" characteristic ideal of K.
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Int(Ok) is a free Og-module

If Int(Ok) has an Og-basis, say {f,}n, with exactly one member from
each degree, i.e., deg(f,) = n, we say that Int(Og) has a regular basis.

By Poélya’s theorem, {(f) }n>0 is a regular basis for Int(Z).
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stence of a regular basis

Theorem (Pélya, 1919)

Int(Ok) has a regular basis if and only if for every integer n > 0, the
ideal J,(Ok) is principal.
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Existence of a regular basis

Theorem (Pélya, 1919)

Int(Ok) has a regular basis if and only if for every integer n > 0, the
ideal J,(Ok) is principal.

Theorem (Ostrowski, 1919)

Int(Ok) has a regular basis if and only if for every ¢, a prime power,
the ideal

II,(K) =: H p (Ostrowski ideal)
peEPK
Ngop)=q

is principal (If ¢ is not the norm of any prime ideal of Ok, set I1,(K) = Ok)

v
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Definition (Zantema, 1982)

A number field K is called a Pdlya field, if any of the following
equivalent conditions holds:

@ Int(Ok) has a regular basis;
@ All the characteristic ideals J,(Ok)’s are principal;
@ All the Ostrowski ideals IT,(K)’s are principal;
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Definition (Zantema, 1982)
A number field K is called a Pdlya field, if any of the following
equivalent conditions holds:

@ Int(Ok) has a regular basis;
@ All the characteristic ideals J,(Ok)’s are principal;
@ All the Ostrowski ideals II,(K)’s are principal;

Remark

| A\

@ If hx =1, then K is a Polya field. But not conversely, for instance, every
cyclotomic field is a Pélya field (Zantema, 1982);

@ If K/Q is a Galois extension, the ideals II:(K)’s for all unramified
primes p (¢t € N) are principal.
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Pélya quadratic fields

Theorem (Zantema, 1982)

A quadratic number field E = Q(v/d) is a Pélya field if and only if one
of the following conditions holds:

o d=—1,—2,—p, where p = 3(mod4) is a prime number;
e d = p, where p is a prime number;

e d=2p, pq, where p = q(mod4) are prime numbers, and
E= Q(\/Zi) has no units of negative norm.
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Pélya cubic fields

Theorem(Zantema, 1982)

A cubic number field K is a Pélya field if and only if
e for K/Q Galois, it is ramified at only one prime;

e for K/Q non-Galois, K has class number one.

Remark

Let K = Q(#) be a cubic field, where 6 is a root of X> + aX + b, for
some a, b € Z. Then K/Q is Galois if and only if —4a3 — 27b? is square.

| A\
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Pélya cubic fields

Theorem(Zantema, 1982)

A cubic number field K is a Pélya field if and only if
e for K/Q Galois, it is ramified at only one prime;

e for K/Q non-Galois, K has class number one.

| A\

Remark

Let K = Q(#) be a cubic field, where 6 is a root of X> + aX + b, for
some a, b € Z. Then K/Q is Galois if and only if —4a3 — 27b? is square.

There are some results concerning Pélya quartic and Pdlya quintic
fields (Zantema, Chabert, Leriche, M.).
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Pélya Galois number fields of degree 6

For L/Q a Galois extension with [L : Q] = 6 (the non-Galois case is
much more complicated!), consider the following diagram

3 L o
VRN
E K
N/
2 Q 3
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Pélya Galois number fields of degree 6

For L/Q a Galois extension with [L : Q] = 6 (the non-Galois case is
much more complicated!), consider the following diagram

Theorem(Zantema, 1982)

If Gal(L/Q) ~ Z/6Z, i.e., K/Q is Galois, then L is a Pélya field if and
only if both F and K are Pélya fields.

For Gal(L/Q) ~ S3, when is L a Pélya field?
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Theorem (Leriche, 2013)
The number field L = Q(v/—3, &/m), for m a cube-free integer, is Pélya iff:

e when m? # 1(mod9), for each prime p dividing 3m, the ideal II,(K) is

principal;
@ when m? = 1(mod9), for each prime p dividing m, the ideal I1,(K) is
principal.
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Theorem (M. - Rajaei, 2019)

The number field L is Pélya field iff for each ramified prime p in L/Q:

(a) if epr/q) = 2, then the ideal II,(E) is principal;

(b) if ep(r/@) = 3, then the ideal II,,(K) is principal;

(c¢) if ep(r/q@) = 6, then both the ideals II,,(E) and II,(K) are principal,
)

where e,,1,/g) denotes the ramification index of p in L/Q.
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Corollary (M. - Rajaei, 2019)
@ If 31 hg and E is Pédlya, then L is a Pélya field. In particular, if £
and K are Pélya, then so is L.
@ If L is Polya, then F is also Pdlya.

@ If all the finite primes of EF are unramified in L, and F is Pélya,
then L is also a Pélya field.
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Corollary (M. - Rajaei, 2019)
@ If 31 hg and E is Pédlya, then L is a Pélya field. In particular, if £
and K are Pélya, then so is L.
@ If L is Polya, then F is also Pdlya.

@ If all the finite primes of EF are unramified in L, and F is Pélya,
then L is also a Pélya field.

v

Note that if all the finite primes of E are unramified in L, then 3 | hg. J
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Theorem (Honda, 1970)

Let L/Q be a Galois extension with Gal(L/Q) ~ S3. Suppose that L is the
splitting field of the polynomial

fX)=X*+aX+b, abcZ

If gcd(a,3b) = 1, then L/Q(v/—4a® — 27b?) is unramified at all finite primes.

v
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Theorem (Honda, 1970)

Let L/Q be a Galois extension with Gal(L/Q) ~ S3. Suppose that L is the
splitting field of the polynomial

fX)=X*+aX+b, abcZ

If gcd(a,3b) = 1, then L/Q(v/—4a® — 27b?) is unramified at all finite primes.

v

Corollary (M. - Rajaei, 2019)

Let L/Q be a Galois extension with Gal(L/Q) ~ S3. Suppose that L is
the splitting field of the polynomial

X)=X+aX+b abel

If ged(a,3b) = 1, and Q(vV—4a® — 27b?) is a Pdlya field, then so is L.

v
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Example

K= Q(a); a is a root of X3 + 10X + 1;

r (U of L) 6 ie f E: November 7,



K= Q(a); ais a root of X3+ 10X + 1;
disc(K/Q) = —4027, L = K(1/—4027) an S3-extension of Q;
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Example
K= Q(a); ais a root of X3+ 10X + 1;
disc(K/Q) = —4027, L = K(/—4027) an Ss-extension of Q;
gcd(10,3) = 1 and Q(+/—4027) is Pélya;
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K= Q(a); ais a root of X3+ 10X + 1;

disc(K/Q) = —4027, L = K(/—4027) an Ss-extension of Q;
gcd(10,3) = 1 and Q(v/—4027) is Pélya;

= L is a Pdlya field;
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K= Q(a); ais a root of X3+ 10X + 1;

disc(K/Q) = —4027, L = K(/—4027) an Ss-extension of Q;
gcd(10,3) = 1 and Q(v/—4027) is Pélya;

= L is a Pélya field;

hx = 6 and K is not Pélya;
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K= Q(a); ais a root of X3+ 10X + 1;

disc(K/Q) = —4027, L = K(/—4027) an Ss-extension of Q;
gcd(10,3) = 1 and Q(v/—4027) is Pélya;

= L is a Pélya field;

hx = 6 and K is not Pélya;

While the ideal I14927(K) is principal (This can only happen for
non-Galois number fields).
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K= Q(a); ais a root of X3+ 10X + 1;

disc(K/Q) = —4027, L = K(/—4027) an Ss-extension of Q;
gcd(10,3) = 1 and Q(v/—4027) is Pélya;

= L is a Pélya field;

hx = 6 and K is not Pélya;

While the ideal I14927(K) is principal (This can only happen for
non-Galois number fields).

Remark

All the above results concerning Pélya Ss-extensions of Q can be
generalized to Dy-extensions of Q for ¢ an odd prime number
(M.-Rajaei, 2020).

| A

A
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Any Questions?
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