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The lower local dimension of a measure p is

d- (x) := liminf log (B, (@) Fact: the spectral measure of an eigenfunction has dimension 0.
H r—0+ log 7

Quantitative weak mixing is about bounding the dimension of spectral measures from below (away from 0).
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For f € L? and A e R*  SE(f,\) = / e 2N £ o () di
Br(0)

If f is an eigenfunction with eigenvalue A,

SE(f,\) = f(x)Vol BR(0) = O(R?)
PROPOSITION (Hof): If |[S%(f, \)| < CR¥™ for any x and R > Ry, then
s (Bo(V) < C'r2

for all » small enough, which implies that

d. . (N > 2a.

H f
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Bufetov-Solomyak (2014-2019), results on many types of one dimensional
systems: tiling spaces, translation flows on flat surfaces

Marshall: Some quantitative results for some self-similar tilings in any
dimension (2017) , substitutions of Salem type (2020).

Forni (2019): uniform rates for translation flows on typical flat surfaces of
any genus

Pedram Safaee (2020): Quantitative weak mixing for IETs

Avila-Forni (2007): Weak mixing for typical translation flows and TETSs
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T tiling of R~ ¥t (T) — T —t for t € R?

©:(T) =T impliest =0

d(T,p(T)) =€ if T and ¢:(T) agree on a ball of radius e

Qr ={o(T) : t € Rd} —tiling space of T

Compact metric space. Foliated by orbits

Not a manifold. Local product structure: V x C

V C R? open ball
C totally disconnected set (usually Cantor)

ot Q27 — 07 Minimal, uniquely ergodic
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Tiling spaces are inverse limits (Anderson-Putnam)

(think generalized solenoids)

Y1 V2

Qzlim(rkﬁk) =g« 17 -
P

The maps v, are defined by substitutions

(Under the right assumptions)

The Cech cohomology is

H™(;2) = lim (H™(T'y; Z), )
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RNV

A =14 2cos(m/7) ~ 2.80193...

S

Géhler, Kwan, Malo%\ @

Ay = 2cos(m/7)(1 + 2cos(w/7)) — 1 ~ 4.0489...
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Given x € X5, we construct a tiling space €2,

A choice x € X5 is a choice of hierarchical structure
(Tower structure)

,“\z‘g)'(" There is an R? action by translation on tiling space

N 1“‘“‘% which usually is minimal and uniquely ergodic
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RANDOM SUBSTITUTION TILINGS

Given x € X5, we construct a tiling space €2,

A choice x € X5 is a choice of hierarchical structure
(Tower structure)

e
“V N'“ There is an R? action by translation on tiling space
‘éﬁl ’%& which usually is minimal and uniquely ergodic
SEATA IR
V»}é‘@ %ﬁ,&& The shift o : Xy — X induces a homeomorphism
AN Mﬁ%'(l‘ of tiling spaces @, : Q, —
PGV BANE viie = et
Nﬂ‘ @V’ N ’»év'%‘ﬂﬂx and induces an action on cohomology
N N
AN ANA A TIONZEON

®r  H* (2 R) — H*(24;R)
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H E O RE M Suppose (4 is a o-invariant ergodic probability measure on Xy
Assume a bunch of hypotheses involving;:

e there is a good word w with no overlaps in the support of
e d+ 1 positive Lyapunov exponents for the induced action on H!(Q,;R)

There exists a constant «,, € (0,1] such that for p-almost every z € Yy,
for almost every . € M., for any B > 1, any Lipschitz function f : Q% — R,
T € Qp,e>0and )\ € RYwith 0 < ||A]| < B,

/ 6—27ri<)\,t>f o 9075(7-) dt| < CfBRd_a“_I_E,
Cr(0) |

for all R large enough. In particular, the lower local dimension of the spectral
measures is bounded from below:

20y, < dy (A).
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Under the same hypotheses,

THEOREM if f, g are sufliciently smooth:

Part 2 ZEro average

/ ‘<f O Sptagﬂ dt < Cf,g,r,ng_%+€
[—R,R]

and for all \ € R¢:

/ 6—271‘@ (A, t) f0¢t< )dt < C},T’eRd—B}\ +€
[_RvR]d

where A* = max {d — 1,d§—i} and so

@ h
A
A1 > Az are the top two Lyapunov exponents min < 1, d (1 ° > < d ()\)
of the induced cocycle on H%(€,;R) L
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STRATEGY

R Relate twisted ergodic integrals to a cocycle on the bundle of spaces gener-
ated by return vectors over the space of all tiling spaces {Q;}.ex,. (Also, if
you want, the cocycle on the bundle over X5 with fibers H!(€Q,;R))

“® Use this to prove a ”Quantitative Veech criterion”: if the cocycle orbit stays
away from lattice points on average then there is quantitative weak mixing
(Bufetov-Solomyak, Forni)

A Estimate Hausdorff dimension of bad deformation parameters and show that
it is codimention dim(F;") — d in space of parameters M, (following Bufetov-
Solomyak)
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Vertices correspond to large patches of a tiling

E A

# of tiles in a patch corresponding to a vertex =
# of paths which reach that vertex

Tilings are obtained by taking limits
of larger and larger patches.
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where p is in the center of mass of tiles of type ¢

fi 1s supported in the union of tiles of type @

For a vertex v, let P(v) be the associated patch,
T, the associated trace, p, € P(v) some point

/ e 2T g0 oy (T dt = / e 2 g; 0.y (T) dt =
P

(v) tiles in P(v)
of type ¢
’770(61')

Z / 6—27TZ<)\,t—Tg>hz(t) dt
t

(=1 g



LET’S DO THE TWIST [i = ;51? * h; = g; 0 SOt(T)

for some g; : 2, — R

where p is in the center of mass of tiles of type ¢

fi 1s supported in the union of tiles of type @

For a vertex v, let P(v) be the associated patch,
T, the associated trace, p, € P(v) some point

/ e 2T g0 oy (T dt = / e 2 g; 0.y (T) dt =
P

(v) tiles in P(v)
of type ¢

Tv(ei) Tv(6i>
Z / 6—27ri<)\,t—7'g>hi(t) dt — Z 627ri<)\,7g>/ 6—27m'<>\,t> hz(t) At
t t;

(=1 g /=1



LET’S DO THE TWIST Z Op * hy = gi 0 i (T)

for some g; : 2, — R

where p is in the center of mass of tiles of type 7

fi 1s supported in the union of tiles of type @

For a vertex v, let P(v) be the associated patch,
T, the associated trace, p, € P(v) some point

/ e 2T g0 oy (T dt = / e 2 g; 0.y (T) dt =
P

(v) tiles in P(v)
__ of type @ (e
/ 6—27?7, (A, t— Tg>h ( )dt Z 627ri<)\,7g>/ 6_27Ti<>\’t>hi(t) At
¢=1 Jti ¢=1 b

7o (€:)

Z 27T’L>\’7'gil )



LET’S DO THE TWIST Z Op * hy = gi 0 i (T)

for some g; : 2, — R

where p is in the center of mass of tiles of type 7

fi 1s supported in the union of tiles of type @

For a vertex v, let P(v) be the associated patch,
T, the associated trace, p, € P(v) some point

/ e 2T g0 oy (T dt = / e 2 g; 0.y (T) dt =
P

(v) tiles in P(v)
__ of type @ (e
/ 6—27?7, (A, t— Tg>h ( )dt Z 627ri<)\,7g>/ 6_27Ti<>\’t>hi(t) At
¢=1 Jti ¢=1 b

( A Tv(ei) '
Z 271 {\,Tp) il ) _ h@()\) Z 627m()\,7'e>

_ /=1



LET’S DO THE TWIST e
/(6_27ri<A,t>giOSOt(T) dt| = hi(M)] Z £2mi(X,7)
P

V) 2




LET’'S DO THE TWIST

/

6—27Ti<)\,t>gi o S015(7') At
(v)

< |hi(N)]

Tv(e@-)

E : 62777,(>\,7'g)

/=1




LET’'S DO THE TWIST

/

6—27Ti<)\,t>gi o S015(7') At
(v)

< |hi(N)]

Tv(e@-)

E : 62777,(>\,7'g)

/=1




LET’'S DO THE TWIST

/

6—27Ti<)\,t>gi o S015(7') At
(v)

< |hi(N)]

Tv(e@-)

E : 62777,(>\,7'g)

/=1




LET’'S DO THE TWIST

/

6—27Ti<)\,t>gi o S015(7') At
(v)

< |hi(N)]

Tv(e@-)

E : 62777,(>\,7'g)

/=1

7™ 1s a return vector
between tiles of type ¢



LET’S DO THE TWIST |, (e)) |
. —— 7* 1s a return vector

| 27 (A, . |
/(6;—27?%0\,@% o o, (T) dt < |h;(A)] Z e2™HATe) | hetween tiles of type ¢
P (v /—1

A

< |h; (M)

mu(es) = 2+ 14 270




LET’S DO THE TWIST el |
(e:) .
. — T* 18 a return vector

: , 2 ( N\, Tp) : :
/(i—2m<>\,t>gi o (T dt < |h; (M) ; e ¢/ between tiles of type 7
7) v :1

< |hi(V)]

mu(es) = 2+ 14 270

For any return vector 7* in P(v)




LET’S DO THE TWIST el |
(e:) .
. — T* 18 a return vector

: , 2 ( N\, Tp) : :
/(i—2m<>\,t>gi o (T dt < |h; (M) ; e ¢/ between tiles of type 7
7) v :1

< |hi(V)]

mu(es) = 2+ 14 270

For any return vector 7* in P(v)

< R (roles) = 517 )2)




LET’S DO THE TWIST |, (e)) |
b 7* 1s a return vector

: i 27 { N\, Ty ) : :
/(6;—27?%0\,@% o (T dt < |hs(N)] KZ € £71 between tiles of type ¢
P (v —1

A

< |h; (M)

(Given that |1 + e*™| < 2 — %HwHﬂi/Z)

(Bufetov-Solomyak)

mu(es) = 2+ 14 270

For any return vector 7* in P(v)

< R (roles) = 517 )2)




*

LET’S DO THE TWIST el |
(e:)
— 7 1S a return vector

: i 27 { N\, Ty ) : :
/(6;—27”0\,@97: o (T dt < |hs(N)] KZ € £71 between tiles of type ¢
P (v —1

A

< |h; (M)

(Given that |1 + 2™« | < 2 — %HwHﬂi/Z)

(Bufetov-Solomyak)

mu(es) = 2+ 14 270

For any return vector 7* in P(v)

< V(e - IR 2)

growth controlled by
the trace cocycle

(cocycle on H4(Q,;R))




*

LET’S DO THE TWIST el |
(e:)
— 7 1S a return vector

: i 27 { N\, Ty ) : :
/(6;—27”0\,@97: o (T dt < |hs(N)] KZ € £71 between tiles of type ¢
P (v —1

A

< |h; (M)

(Given that |1 + ™| <2 — %||WH]122</2)

(Bufetov-Solomyak)

mu(es) = 2+ 14 270

For any return vector 7* in P(v)

< V(e - §||<A,TT*>H%@/Z>

growth controlled by growth controlled by
the trace cocycle the return vector cocycle

(cocycle on H4(Q,;R))  (cocycle on H(Q,;R))




*

LET’S DO THE TWIST el |
(e:)
— 7 1S a return vector

: i 27 { N\, Ty ) : :
/(6;—27”0\,@97: o (T dt < |hs(N)] KZ € £71 between tiles of type ¢
P (v —1

< |hi(V)]

(Given that |1 + ™| <2 — %||WH]122</2)

(Bufetov-Solomyak)

mu(es) = 2+ 14 270

For any return vector 7* in P(v)

< V(e - §||<A,TT*>H%@/Z>

growth controlled by growth controlled by
the trace cocycle the return vector cocycle

(cocycle on H4(Q,;R))  (cocycle on H(Q,;R))
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(Bufetov-Solomyak)

mu(es) = 2+ 14 270

For any return vector 7* in P(v)
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growth controlled by growth controlled by
the trace cocycle the return vector cocycle

(cocycle on H4(Q,;R))  (cocycle on H(Q,;R))

When d = 1 there is one cocycle to care about.
When d > 1 these are different!
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T 1S a return vector

: i 27 { N\, Ty ) : :
/(i—2m<>\,t>gi o @y (T) dt < |hs(N)] ; € 71 between tiles of type ¢
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growth controlled by growth controlled by
the trace cocycle the return Vector cocycle
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When d = 1 there is one cocycle to care about.
When d > 1 these are different!

| Need to stay away from lattice points under the renormalization dynamics

(cocycle dynamics). Use the Erdos-Kahane method (B-S) to estimate the di-
mension of set of deformation parameters which does not stay away from lattice
points. This set has codimension at most dim(FE;") —d, which is why if you have
d + 1 positive exponents the bad set is small.




