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Alan Mathison Turing, OBE, FRS (1912–1954)

Mathematics at Cambridge,
“On computable numbers” (1936)

Wartime work on breaking German
codes (“Enigma”) at Bletchley Park

After war, worked on
ñ design of electronic computers,
ñ artificial intelligence

(“Turing Test”),
ñ mathematical biology

Openness about homosexuality
resulted in criminal conviction

Death from cyanide poisoning in
1954
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Axioms and Primitives

Axiomatic method systematizes a domain of knowledge
ñ identifying primitive concepts and relations
ñ collecting basic propositions (axioms)

All truths of domain can be
ñ formulated in terms of primitive concepts
ñ proved from axioms

Axioms completely describe relationships between primitives

Eliminates “intuition” from proofs
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Hilbert’s Geometry

David Hilbert (1862–1943)

Worked at University of Göttingen

Foremost mathematician of his
time

Foundations of Geometry (1899)

Primitives:
ñ point, line, plane
ñ betweeness, containment,

congruence
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Hilbert’s Geometry: Axioms

Two distinct points determine a straight line, i.e., for any two
distinct points A and B there is one and only one line g which
contains both A and B
If A is between B and C , then A is also between C and B
If a line g and a point A are both contained in a plane α, but A is
not contained in g, then there is one and only one line h
contained in α which contains A but has no point in common
with g. (“Parallel Axiom”)

…
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Development of Axiomatic Method

Euclid’s Elements (c. 300 BCE)

More rigorous theories for more areas of science (19th/20th C.)
ñ Arithmetic (Dedekind)
ñ Set theory (Cantor, Zermelo)
ñ Geometry (Riemann, Lobachevsky, Pasch, Hilbert)
ñ Probability theory (Kolmogorov)
ñ Thermodynamics, kinetic theory of gases (Hilbert)
ñ …

Formalization
ñ Logic (Frege, Peano, Russell, Hilbert)
ñ Formal axiom systems for mathematics, physics
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Axiom Systems and Logical Calculus

Hilbert and his school developed logical calculus which could be
applied to arbitrary axiom systems

Allowed formalization of axiomatic systems as collections of
formulas in an artificial language

A proposition follows from the axioms if, in the logical calculus,
there is a derivation of the (formalized) proposition from the
(formalized) axioms.

Derivations purely formal, sequences of symbols

Decision Problem (1921): Show that question of whether a
formula can be derived from axioms has a systematic,
mechanical solution
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Alan Turing’s “On Computable Numbers” (1936)

Introduces Turing Machines
as a way to make “mechanical
procedure” precise

Applies theory to decision
problem (shows cannot be
solved)

Read original here
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Computable Numbers

Every real number can be written as an infinite decimal, e.g,

1/2 = 0.5000000 . . .
1/3 = 0.3333333 . . .

π − 3 = 0.1415926 . . .

For simplicity, we may also write numbers as infinite binary
decimals. In binary,

1/2 = 0.100000000000000000000000 . . .
1/3 = 0.010101010101010101010101 . . .

π − 3 = 0.001001000011111101101010 . . .

A real number is computable if the infinite sequence of 0’s and
1’s can be produced mechanically (by a machine/program)
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Turing’s Abstract “Computing Machines”

Tape
… …

read/write head

Program

Tape can contain symbols
(e.g., blank (#), 0, 1)

Read/write head can read
one square at a time, replace
symbol on it, move one
square to left or right

Program tells machine what
to do, depending on which
“state” it is in, and what it
currently reads
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Machines Computing Numbers

Turing Machine starts on empty tape, writes infinite sequence of 0’s
and 1’s on its tape, never halts

Sequence of 0’s and 1’s produced by TM: real number in binary

Machine computes a computable number

Richard Zach (University of Calgary) Alan Turing and the Decision Problem January 24, 2012 13 / 35



Axiomatic Method Turing Machines Undecidability The Decision Problem Conclusion

Machines Computing Output from Input

Turing machine starts on tape (which contains input), eventually
halts

Input may be a number n represented by a sequence of n 1’s on
the tape

Machine halts if program doesn’t say what to do

Contents of tape after machine halts: output

Such a TM computes a function

If output is always just a single 0 or 1:
TM tests if input satisfies a condition (1 if it does, 0 if not)
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Turing Machine Program for 1/3

1 2

#,0, R

#,1, R

〈1,#,0, R,2〉;
〈2,#,1, R,1〉

Start on empty tape,
in state 1

Since tape blank, always
reads #

Machine alternates between
state 1 and 2

Writes 0 and moves right,
then 1 and moves right, …
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Turing Machine Program for Testing if n is Even

3

1 2

1,#, R

1,#, R

#,1, L #,0, L

〈1,1,#, R,2〉;
〈1,#,1, L,3〉;
〈2,1,#, R,1〉;
〈2,#,0, L,3〉

Machine starts at left of
sequence of 1’s in
state 1

Keeps going right until
it reads a blank

While it does, it
alternates between
states 1 and 2, and
erases tape

If it stops reading 1’s in
state 1, it’s read an
even number of 1’s
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Running the Turing Machines

Open xTuringMachine

Select program

Set state to 1

Click “run”
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Descriptions of Turing Machines

A TM is described entirely by its program

That program is a list of instruction

We can associate with each instruction a number:

〈 i, Sj , Sk, L/R, m 〉
3 1 . . .1︸ ︷︷ ︸

i

3 2 . . .2︸ ︷︷ ︸
j

3 2 . . .2︸ ︷︷ ︸
k

4/5 3 1 . . .1︸ ︷︷ ︸
m

and with a program (list of instruction), the number
corresponding to each instruction, separated by 7’s.

For instance, 〈1,#,0, R,2〉; 〈2,#,1, R,1〉 has number

31 32 322 5 311 7 311 32 3222 5 31

(# = S1, 0 = S2, 1 = S3)
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The Universal Turing Machine

The Universal Turing Machine U
ñ takes as part of input the number k corresponding to description

of a turing machine T
ñ when started on a tape containing k 1’s (plus other input), it does

exactly what T would have done on the input

If T computes a number, U started on input k computes the
same number

If we write T(n) for he output of T started on input n, then

T(n) = U(k,n)

for all n.

U is an interpreter for TM programs
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Testing TM Codes

Since TM programs can be identified with their corresponding
numbers, we can use TM programs as inputs to other TMs

We might ask: are there TMs that test TM programs for certain
properties, e.g.,

ñ Does T compute a number, i.e.,
does T produce an infinite sequence of 0’s and 1’s?
(“Is T circle-free?”)

ñ Does T ever write a 0 if started on the blank tape?

These decision problems would be solvable if some TM started
on input k always produces 1 or 0 depending on the answer
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Unsolvability of Decision Problems

Turing showed that these problems are not solvable by Turing
Machines

One important problem of this sort is the Halting Problem:
ñ Does T started on input n ever halt?

Famously also unsolvable, but not mentioned by Turing!
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Uncomputable Numbers

Imagine the numbers corresponding to TM programs listed in
ascending order

Not all of these TMs compute numbers;
leave off all those that don’t

Let ki be the ith TM program code in that list

TM ki computes a number αi (sequence of 0’s and 1’s)

Let αi(j) be the jth digit of αi
Let β be the number whose jth digit is 1−αi(j)
This means that if the jth digit of αi is 0, the jth digit of β is 1,
and vice versa
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An Uncomputable Number

α1 = 0. 0 0 0 0 0 0 0 0 . . .
α2 = 0. 1 1 1 1 1 1 1 1 . . .
α3 = 0. 0 1 0 1 0 1 0 1 . . .
α4 = 0. 1 0 0 1 0 1 1 0 . . .
α5 = 0. 0 1 1 0 1 1 0 0 . . .
α6 = 0. 0 0 0 0 0 0 0 0 . . .
α7 = 0. 1 0 1 1 0 1 1 1 . . .
α8 = 0. 0 0 1 0 1 0 1 0 . . .
...
β = 0. 1 0 1 0 0 1 0 1 . . .

So β is not among the αi’s, and thus not computable

But wait! Couldn’t we compute β by computing 1−αi(i) in
sequence (using U )?
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Undecidability of Circle-Freeity

In order to compute β, we’d have to first find the code of the ith
circle-free TM!

Is there a TM C which, if started on input k, will eventually halt
with

ñ output 1 if the TM with number k is circle-free, and with
ñ output 0 if it is not?

If there were such a TM, we could use it to compute β
Since β is not among the αi’s, it isn’t computable

So there can’t be a TM like C
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Logic and Formal Axioms

Formal language and calculus of logic developed by the 1920s

The question of whether a mathematical proposition is a
consequence of some axiom system can be made precise:

ñ Is there a derivation of the corresponding formula from the
axioms in the logical calculus?

For instance, in an axiom systems for number theory:
ñ to ask whether Lagrange’s Theorem “Every natural number is the

sum of four squares” follows from axioms
ñ is to ask if the formula

∀x∃y1∃y2∃y3∃(y4 x = y2
1 +y2

2 +y2
3 +y2

4 )

can be proved in Hilbert’s logical calculus from the axiom
formulas of Peano Arithmetic.

Richard Zach (University of Calgary) Alan Turing and the Decision Problem January 24, 2012 25 / 35



Axiomatic Method Turing Machines Undecidability The Decision Problem Conclusion

The Logical Decision Problem

The logical decision problem is the problem of finding a a
general mechanical procedure which, for any formal axiom
system and any formula, can decide if the formula can be derived
from the axioms in the logical calculus

Would suffice if there were a general mechanical procedure
which decides if a formula can be derived in Hilbert’s logical
calculus alone (without axioms)

[B can be proved from axioms A1, …, An, if, and only if

(A1 & . . . & An)→ B

can be proved in the logical calculus alone]

Hilbert thought such a procedure can be found

Partial successes in the 1920s gave cause for optimisim
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Turing’s Negative Solution to the Decision Problem

A TM T and its computation on an empty tape may be seen as an
axiomatic theory!

Then the question of whether T , e.g., ever prints the symbol 0
can be seen to fall within the decision problem:
Does the statement “TM T ever prints a 0” follow from the
axioms?

So if the decision problem could be solved, we would also have a
solution to the decision problems about Turing Machines.

But as Turing showed, these are unsolvable.
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Turing Machines as Axiom Systems

Primitives (same for all TMs):

“configuration of T ”, “square of the tape”,
“state of machine”, “symbol”

“follows after” (for configrations of T ),
“right of”, “left of” (for squares)

“in configuration x, T is in state qi
“in configuration x, T is scanning square s”
“in configuration x, square s contains symbol Sj”
…
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Turing Machines as Axiom Systems

Axioms (some depend on T ):

Facts about the execution of T , which depend on T ’s program,
e.g.,

If T contains the instruction

〈qi, Sj , Sk, R, qm〉,

one of the axioms is
“Whenever T is in a configuration where its state is qi, it
is scanning the square s of the tape, and square s
contains symbol Sj , then in the next configuration T is
in state qm, the square s contains symbol Sk, and T is
scanning the square to the right of s”

Other facts about T , e.g., that the tape doesn’t change outside of
where T is working, etc.
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Questions about Turing Machines

Turing Machine T ever prints 0

if, and only if

“In some configuration of T some square s contains the symbol 0”
follows from the axioms describing T .
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Importance of “On Computable Numbers”

Turing’s paper has made immense impact in several respects

Limitations of logic and the axiomatic method

Foundation of theoretical computer science

Insight into the nature of computation
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Limitations of Logic

Logic cannot be fully mechanized

No general procedure for all mathematical problems

Despite this, subsequent work in
ñ automated deduction
ñ decision procedures for specific theories (e.g., geometry)

Also, no general procedure for answering questions about
computer programs
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Foundations of Computer Science

Turing’s work became foundation for mathematical theory of
computability

…which later became theoretical computer science

Turing machines now used as main abstract model for
computability and complexity of computation
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Nature of Computation

In his paper, Turing was first to provide reasons for taking
Turing machine as analysis of computability

ñ Reflection on what human computors can do
ñ Equivalence of Turing machines to other definitions
ñ Showing that large classes of numbers/functions are computable

by TM

Reason people became convinced of unsolvability of the decision
problem after Turing

Turing machine analysis of computability now widely accepted
(“Church-Turing Thesis”)
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Thank You

Next lectures:
ñ Michael Williams: “Turing’s Real Machines”

Tuesday, February 28
ñ John Ferris: “Alan Turing and Enigma”

Tuesday, March 27

Please visit

ucalgary.ca/turing

for information on more events!
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