Random Maps 8

Gregory Miermont
Fri, Jun 15, 2012
PIMS, University of British Columbia
PIMS-MPrime Summer School in Probability
The study of maps, that is of graphs embedded in surfaces, is a popular subject that has implications in many branches of mathematics, the most famous aspects being purely graph-theoretical, such as the four-color theorem. The study of random maps has met an increasing interest in the recent years. This is motivated in particular by problems in theoretical physics, in which random maps serve as discrete models of random continuum surfaces. The probabilistic interpretation of bijective counting methods for maps happen to be particularly fruitful, and relates random maps to other important combinatorial random structures like the continuum random tree and the Brownian snake. This course will survey these aspects and present recent developments in this area.

You are missing some Flash content that should appear here! Perhaps your browser cannot display it, or maybe it did not initialize correctly.