# Statistics Theory

## Bayesian study design for nonlinear systems: an animal disease transmission experiment case study

## The Lasso: A Brief Review and a New Significance Test

Tibshirani will review the lasso method and show an example of its utility in cancer diagnosis via mass spectometry. He will then consider testing the significance of the terms in a fitted regression, fit via the lasso. He will present a novel test statistic for this problem and show that it has a simple asymptotic null distribution. This work builds on the least angle regression approach for fitting the lasso, and the notion of degrees of freedom for adaptive models (Efron 1986) and for the lasso (Efron et. al 2004, Zou et al 2007). He will give examples of this procedure, discuss extensions to generalized linear models and the Cox model, and describe an R language package for its computation.

This work is joint with Richard Lockhart (Simon Fraser University), Jonathan Taylor (Stanford) and Ryan Tibshirani (Carnegie Mellon).

## Sparse Linear Models

In a statistical world faced with an explosion of data, regularization has become an important ingredient. In many problems, we have many more variables than observations, and the lasso penalty and its hybrids have become increasingly useful. This talk presents a general framework for fitting large scale regularization paths for a variety of problems. We describe the approach, and demonstrate it via examples using our R package GLMNET. We then outline a series of related problems using extensions of these ideas. This is joint work with Jerome Friedman, Rob Tibshirani and Noah Simon.

Trevor Hastie is noted for his many contributions to the statistician’s toolbox of flexible data analysis methods. Beginning with his PhD thesis, Trevor developed a nonparametric version of principal components analysis, terming the methodology principal curves and surfaces. During the years after his PhD, as a member of the AT&T Bell Laboratories statistics and data analysis research group, Trevor developed techniques for linear, generalized linear, and additive models and worked on the development of S, the pre-cursor of R. Much of this work is contained in the well-known Statistical Computing in S (co-edited with John Chambers, 1991). In the book Generalized Additive Models (1990) Trevor and co-author Rob Tibshirani modified techniques like multiple linear regression and logistic regression to allow for smooth modeling while avoiding the usual dimensionality problems. In 1994, Trevor left Bell Labs for Stanford University, to become Professor in Statistics and Biostatistics. Trevor has applied his skills to research in machine learning. His book Elements of Statistical Learning (with Rob Tibshirani and Jerry Friedman, Springer 2001; second edition 2009) is famous for providing a readable account of flexible techniques for high dimensional data. This popular book expertly bridges the philosophical and research gap between computer scientists and statisticians.

## Epidemiologic methods are useless. They can only give you answers

**Brief Biography**

*Miguel Hernán is Professor of Department of Epidemiology and Department of Biostatistics at the Harvard School of Public Health (HSPH). His research is focused on the development and application of causal inference methods to guide policy and clinical interventions. He and his collaborators apply statistical methods to observational studies under suitable conditions to emulate hypothetical randomized experiments so that well-formulated causal questions can be investigated properly. His research applied to many areas, including investigation of the optimal use of antiretroviral therapy in patients infected with HIV, assessment of various interventions of kidney disease, cardiovascular disease, cancer and central nervous system diseases. He is Associate Director of HSPH Program on Causal Inference in Epidemiology and Allied Sciences, member of the Affiliated Faculty of the Harvard-MIT Division of Health Sciences and Technology, and an Editor of the journal EPIDEMIOLOGY. He is the author of upcoming highly anticipated textbook "Causal Inference" (Chapman & Hall/CRC, 2013), drafts of selected chapters are available on his website.*

## Pumps, Maps and Pea Soup: Spatio-temporal methods in environmental epidemiology

Further information about the Constance van Eeden Invited Speaker Program

This talk provides an introduction to epidemiological analysis where the distribution of health outcomes and related exposures are measured over both space and time. Developments in this field have been driven by public interest in the effects of environmental pollution, increased availability of data and increases in computing power. These factors, together with recent advances in the field of spatio-temporal statistics, have led to the development of models which can consider relationships between adverse health outcomes and environmental exposures over both time and space simultaneously.

Using illustrative examples, from outbreaks of cholera in London in the 1850s, episodes of smog in the 1950s to present day epidemiological studies, we discuss a variety of issues commonly associated with analyses of this type including modelling auto-correlation, preferential sampling of exposures and ecological bias. The precise choice of statistical model may be based on whether we are explicitly interested in the spatio-temporal pattern of disease incidence, e.g. disease mapping and cluster detection, or whether clustering is a nuisance quantity that we need to acknowledge, e.g. spatio-temporal regression. Throughout we consider the practical implementation of models with specific focus on inference within a Bayesian framework using computational methods such as Markov Chain Monte Carlo and Integrated Nested Laplace Approximations.

The talk also serves as a precursor to a graduate level course on spatio-temporal methods in epidemiology. This course will cover the basic concepts of epidemiology, methods for temporal and spatial analysis and the practical application of such methods using commonly available computer packages. It will have an applied focus with both lectures and practical computer sessions in which participants will be guided through analyses of epidemiological data.

**BACKGROUND INFORMATION:** The Statistics Department, with the support of the Constance van Eeden Fund, is honoured to host Dr Gavin Shaddick during term 2 2012-13. Dr Shaddick, a Reader in Statistics in the Department of Mathematical Sciences at the University of Bath, has achieved international prominence for his contributions to the theory and application of Bayesian statistics to the areas of spatial epidemiology, environmental health risk and the modelling of spatio-temporal fields of environmental hazards.

Dr Shaddick will begin his visit to the Department, by giving the 2012-13 van Eeden lecture. That lecture will inaugurate a one term special topics graduate course in statistics, which the Department of Statistics is offering next term. It will be given by Dr Shaddick and Dr James Zidek (Statistics, UBC) on the subject of spatial epidemiology. This course, which is aimed primarily at a statistical audience, will provide an introduction to environmental epidemiology and spatio-temporal process modeling, as it applies to the assessment of risk to human health and welfare due to random fields of hazards such as air pollution. Please see the course outline for more information.